Certainly! Let's make [tex]\(b\)[/tex] the subject of the given equation:
[tex]\[ A = \frac{1}{2} h (a \cdot b) \][/tex]
Here are the steps:
1. Starting with the given equation:
[tex]\[
A = \frac{1}{2} h (a \cdot b)
\][/tex]
2. Eliminate the fraction by multiplying both sides by 2:
[tex]\[
2A = h (a \cdot b)
\][/tex]
3. Isolate [tex]\(b\)[/tex] by dividing both sides by [tex]\(h \cdot a\)[/tex]:
[tex]\[
b = \frac{2A}{h \cdot a}
\][/tex]
So, the value of [tex]\(b\)[/tex] in terms of [tex]\(A\)[/tex], [tex]\(h\)[/tex], and [tex]\(a\)[/tex] is:
[tex]\[
b = \frac{2A}{a \cdot h}
\][/tex]
This expresses [tex]\(b\)[/tex] as the subject of the given equation.