vii) [tex]\[(\operatorname{Sin} A + \operatorname{Cos} A)^2 - (\operatorname{Sin} A - \operatorname{Cos} A)^2 = 4 \operatorname{Sin} A \operatorname{Cos} A\][/tex]



Answer :

Certainly! Let's solve the given expression step-by-step:

We are given the expression:
[tex]\[ (\sin A + \cos A)^2 - (\sin A - \cos A)^2 \][/tex]

Our goal is to show that this simplifies to:
[tex]\[ 4 \sin A \cos A \][/tex]

First, we'll expand each square term:

1. Expand [tex]\((\sin A + \cos A)^2\)[/tex]:
[tex]\[ (\sin A + \cos A)^2 = (\sin A + \cos A)(\sin A + \cos A) \][/tex]
Using the distributive property:
[tex]\[ = \sin^2 A + \sin A \cos A + \cos A \sin A + \cos^2 A \][/tex]
[tex]\[ = \sin^2 A + 2 \sin A \cos A + \cos^2 A \][/tex]

2. Expand [tex]\((\sin A - \cos A)^2\)[/tex]:
[tex]\[ (\sin A - \cos A)^2 = (\sin A - \cos A)(\sin A - \cos A) \][/tex]
Using the distributive property:
[tex]\[ = \sin^2 A - \sin A \cos A - \cos A \sin A + \cos^2 A \][/tex]
[tex]\[ = \sin^2 A - 2 \sin A \cos A + \cos^2 A \][/tex]

Next, we subtract these two expanded expressions:
[tex]\[ (\sin^2 A + 2 \sin A \cos A + \cos^2 A) - (\sin^2 A - 2 \sin A \cos A + \cos^2 A) \][/tex]

Combine like terms:
[tex]\[ (\sin^2 A + 2 \sin A \cos A + \cos^2 A) - \sin^2 A + 2 \sin A \cos A - \cos^2 A \][/tex]
[tex]\[ = \sin^2 A + 2 \sin A \cos A + \cos^2 A - \sin^2 A - \cos^2 A + 2 \sin A \cos A \][/tex]

Notice that [tex]\(\sin^2 A\)[/tex] and [tex]\(-\sin^2 A\)[/tex] cancel out, likewise for [tex]\(\cos^2 A\)[/tex] and [tex]\(-\cos^2 A\)[/tex]:
[tex]\[ = 2 \sin A \cos A + 2 \sin A \cos A \][/tex]
[tex]\[ = 4 \sin A \cos A \][/tex]

Therefore, we have shown that:
[tex]\[ (\sin A + \cos A)^2 - (\sin A - \cos A)^2 = 4 \sin A \cos A \][/tex]

This confirms the given result.