Find the intervals on which [tex]f(x)[/tex] is increasing, the intervals on which [tex]f(x)[/tex] is decreasing, and the local extrema.
[tex]
f(x) = -3x^2 - 18x - 26
[/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. The function is increasing on [tex]\square[/tex].
(Type your answer in interval notation. Type integers or simplified fractions. Use a comma to separate answers as needed.)
B. The function is never increasing.

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. The function is decreasing on [tex]\square[/tex].
(Type your answer in interval notation. Type integers or simplified fractions. Use a comma to separate answers as needed.)
B. The function is never decreasing.

Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice.

A. The function has a local minimum [tex]f(\square)[/tex] at [tex]\square[/tex] and no local maximum.
(Type integers or simplified fractions.)
B. The function has a local maximum [tex]f(\square)[/tex] at [tex]\square[/tex] and a local minimum [tex]f(\square) = \square[/tex].
C. The function has a local maximum [tex]f(\square)[/tex] at [tex]\square[/tex] and no local minimum.
D. The function has no local extrema.



Answer :

To analyze the behavior of the function [tex]\( f(x) = -3x^2 - 18x - 26 \)[/tex], we start by finding its first and second derivatives.

1. First Derivative:

The first derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx} \left( -3x^2 - 18x - 26 \right) = -6x - 18 \][/tex]

2. Critical Points:

Critical points occur where [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ -6x - 18 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ -6x = 18 \implies x = -3 \][/tex]

3. Intervals of Increase and Decrease:

Determine the sign of [tex]\( f'(x) \)[/tex] on the intervals around the critical point [tex]\( x = -3 \)[/tex]:

- For [tex]\( x < -3 \)[/tex] (e.g., [tex]\( x = -4 \)[/tex]):
[tex]\[ f'(-4) = -6(-4) - 18 = 24 - 18 = 6 > 0 \][/tex]
The function is increasing on [tex]\( (-\infty, -3) \)[/tex].

- For [tex]\( x > -3 \)[/tex] (e.g., [tex]\( x = -2 \)[/tex]):
[tex]\[ f'(-2) = -6(-2) - 18 = 12 - 18 = -6 < 0 \][/tex]
The function is decreasing on [tex]\( (-3, \infty) \)[/tex].

4. Second Derivative and Concavity:

The second derivative of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ f''(x) = \frac{d}{dx} \left( -6x - 18 \right) = -6 \][/tex]
Since [tex]\( f''(x) < 0 \)[/tex] for all [tex]\( x \)[/tex], the function is concave down everywhere, indicating that any critical point will be a local maximum.

Evaluate [tex]\( f(x) \)[/tex] at the critical point [tex]\( x = -3 \)[/tex]:
[tex]\[ f(-3) = -3(-3)^2 - 18(-3) - 26 = -3(9) + 54 - 26 = -27 + 54 - 26 = 1 \][/tex]
Hence, there is a local maximum at [tex]\( (x, f(x)) = (-3, 1) \)[/tex].

Select the correct choices:

- The function is increasing on [tex]\( (-\infty, -3) \)[/tex]:

A. The function is increasing on [tex]\( (-\infty, -3) \)[/tex].

- The function is decreasing on [tex]\( (-3, \infty) \)[/tex]:

A. The function is decreasing on [tex]\( (-3, \infty) \)[/tex].

- The function has a local maximum at [tex]\( x = -3 \)[/tex] with [tex]\( f(x) = 1 \)[/tex]:

C. The function has a local maximum at [tex]\( x = -3 \)[/tex], [tex]\( f(x) = 1 \)[/tex], and no local minimum.