Answer :

To solve the equation [tex]\( 4 \cdot 3^{1-x} + 3^{2-x} = 63 \)[/tex], follow these steps:

1. Rewrite the equation in terms of a single exponent base, [tex]\(3\)[/tex]:
[tex]\[ 4 \cdot 3^{1-x} + 3^{2-x} = 63 \][/tex]

2. Substitute [tex]\( y = 3^{-x} \)[/tex]:
[tex]\[ 4 \cdot 3 \cdot y + 9 \cdot y = 63 \][/tex]
Simplify this:
[tex]\[ 12y + 9y = 63 \][/tex]
Combine like terms:
[tex]\[ 21y = 63 \][/tex]

3. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{63}{21} = 3 \][/tex]

4. Recall that [tex]\( y = 3^{-x} \)[/tex], so:
[tex]\[ 3^{-x} = 3 \][/tex]

5. Solve for [tex]\( x \)[/tex] using properties of exponents:
[tex]\[ -x = 1 \][/tex]
Therefore:
[tex]\[ x = -1 \][/tex]

So, the solution to the equation [tex]\( 4 \cdot 3^{1-x} + 3^{2-x} = 63 \)[/tex] is [tex]\( x = -1 \)[/tex].

Let's check this solution against the given multiple choice options:
a. [tex]\( x = -3 \)[/tex]
b. [tex]\( x = -1 \)[/tex]
c. [tex]\( x = 1 \)[/tex]
d. [tex]\( x = 3 \)[/tex]

The correct answer is:
[tex]\[ \boxed{x = -1} \][/tex]