Answer :

Sure, let's solve the given system of simultaneous equations:

[tex]\[ \begin{aligned} 1. \quad 3x - y &= 9 \\ 2. \quad x + 5y &= 5 \end{aligned} \][/tex]

### Step-by-Step Solution:

1. Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] from Equation 1:

From the first equation:
[tex]\[ 3x - y = 9 \][/tex]

Rearrange to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = 3x - 9 \][/tex]

2. Substitute [tex]\( y \)[/tex] in the second equation:

Substitute [tex]\( y = 3x - 9 \)[/tex] into the second equation:
[tex]\[ x + 5(3x - 9) = 5 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Simplify the equation:
[tex]\[ x + 15x - 45 = 5 \][/tex]

Combine like terms:
[tex]\[ 16x - 45 = 5 \][/tex]

Add 45 to both sides:
[tex]\[ 16x = 50 \][/tex]

Divide by 16:
[tex]\[ x = \frac{50}{16} = 3.125 \][/tex]

4. Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex]:

We know:
[tex]\[ y = 3x - 9 \][/tex]

Substitute [tex]\( x = 3.125 \)[/tex]:
[tex]\[ y = 3(3.125) - 9 \][/tex]

Calculate the value:
[tex]\[ y = 9.375 - 9 \][/tex]

Simplify:
[tex]\[ y = 0.375 \][/tex]

Thus, the solution to the system of equations is:
[tex]\[ \boxed{(x, y) = (3.125, 0.375)} \][/tex]