Answer :
To evaluate the piecewise function [tex]\( h(x) \)[/tex], we look at each interval separately, using the described function forms. Let's determine [tex]\( h \)[/tex] at specific values of [tex]\( x \)[/tex] in each relevant interval.
Given function:
[tex]\[ h(x)=\left\{ \begin{array}{ll} -x^2-6x-9, & x<-2 \\ \left(\frac{1}{3}\right)^x-4, & -2 \leq x \leq 2 \\ \frac{1}{2} x-4, & x>2 \end{array} \right. \][/tex]
1. Calculate [tex]\( h(-3) \)[/tex] :
- Since [tex]\(-3 < -2\)[/tex], we use the first piece of the function:
[tex]\[ h(x) = -x^2 - 6x - 9 \][/tex]
- Substituting [tex]\( x = -3 \)[/tex]:
[tex]\[ h(-3) = -(-3)^2 - 6(-3) - 9 = -9 + 18 - 9 = 0 \][/tex]
So, [tex]\( h(-3) = 0 \)[/tex].
2. Calculate [tex]\( h(-2) \)[/tex] :
- Since [tex]\(-2 \leq -2 \leq 2\)[/tex], we use the second piece of the function:
[tex]\[ h(x) = \left(\frac{1}{3}\right)^x - 4 \][/tex]
- Substituting [tex]\( x = -2 \)[/tex]:
[tex]\[ h(-2) = \left(\frac{1}{3}\right)^{-2} - 4 = 3^2 - 4 = 9 - 4 = 5 \][/tex]
So, [tex]\( h(-2) = 5 \)[/tex].
3. Calculate [tex]\( h(4) \)[/tex] :
- Since [tex]\( 4 > 2\)[/tex], we use the third piece of the function:
[tex]\[ h(x) = \frac{1}{2}x - 4 \][/tex]
- Substituting [tex]\( x = 4 \)[/tex]:
[tex]\[ h(4) = \frac{1}{2}(4) - 4 = 2 - 4 = -2 \][/tex]
So, [tex]\( h(4) = -2 \)[/tex].
Summarizing the results:
[tex]\[ \begin{array}{l} h(-3) = 0 \\ h(-2) = 5 \\ h(4) = -2 \end{array} \][/tex]
Given function:
[tex]\[ h(x)=\left\{ \begin{array}{ll} -x^2-6x-9, & x<-2 \\ \left(\frac{1}{3}\right)^x-4, & -2 \leq x \leq 2 \\ \frac{1}{2} x-4, & x>2 \end{array} \right. \][/tex]
1. Calculate [tex]\( h(-3) \)[/tex] :
- Since [tex]\(-3 < -2\)[/tex], we use the first piece of the function:
[tex]\[ h(x) = -x^2 - 6x - 9 \][/tex]
- Substituting [tex]\( x = -3 \)[/tex]:
[tex]\[ h(-3) = -(-3)^2 - 6(-3) - 9 = -9 + 18 - 9 = 0 \][/tex]
So, [tex]\( h(-3) = 0 \)[/tex].
2. Calculate [tex]\( h(-2) \)[/tex] :
- Since [tex]\(-2 \leq -2 \leq 2\)[/tex], we use the second piece of the function:
[tex]\[ h(x) = \left(\frac{1}{3}\right)^x - 4 \][/tex]
- Substituting [tex]\( x = -2 \)[/tex]:
[tex]\[ h(-2) = \left(\frac{1}{3}\right)^{-2} - 4 = 3^2 - 4 = 9 - 4 = 5 \][/tex]
So, [tex]\( h(-2) = 5 \)[/tex].
3. Calculate [tex]\( h(4) \)[/tex] :
- Since [tex]\( 4 > 2\)[/tex], we use the third piece of the function:
[tex]\[ h(x) = \frac{1}{2}x - 4 \][/tex]
- Substituting [tex]\( x = 4 \)[/tex]:
[tex]\[ h(4) = \frac{1}{2}(4) - 4 = 2 - 4 = -2 \][/tex]
So, [tex]\( h(4) = -2 \)[/tex].
Summarizing the results:
[tex]\[ \begin{array}{l} h(-3) = 0 \\ h(-2) = 5 \\ h(4) = -2 \end{array} \][/tex]