Question

The formula for the volume of a right circular cylinder is [tex] V = \pi r^2 h [/tex]. If [tex] r = 2b [/tex] and [tex] h = 5b + 3 [/tex], what is the volume of the cylinder in terms of [tex] b [/tex]?

A. [tex] 10 \pi b^2 + 6 \pi b [/tex]

B. [tex] 20 \pi b^3 + 12 \pi b^2 [/tex]

C. [tex] 20 \pi^2 b^3 + 12 \pi^2 b^2 [/tex]

D. [tex] 50 \pi b^3 + 20 \pi b^2 + 90 \pi b [/tex]



Answer :

To find the volume of a right circular cylinder in terms of the variable [tex]\( b \)[/tex], we start with the formula for the volume of a cylinder:

[tex]\[ V = \pi r^2 h \][/tex]

Given that [tex]\( r = 2b \)[/tex] and [tex]\( h = 5b + 3 \)[/tex], we substitute these expressions into the formula.

First, we substitute [tex]\( r = 2b \)[/tex] into the equation:

[tex]\[ r^2 = (2b)^2 = 4b^2 \][/tex]

Next, substitute both [tex]\( r^2 \)[/tex] and [tex]\( h \)[/tex] into the volume formula:

[tex]\[ V = \pi (r^2) h = \pi (4b^2)(5b + 3) \][/tex]

Now, distribute [tex]\( 4b^2 \)[/tex] across [tex]\( 5b + 3 \)[/tex]:

[tex]\[ V = \pi (4b^2 \cdot 5b + 4b^2 \cdot 3) \][/tex]

[tex]\[ V = \pi (20b^3 + 12b^2) \][/tex]

Therefore, the volume of the cylinder in terms of [tex]\( b \)[/tex] can be written as:

[tex]\[ V = 20\pi b^3 + 12\pi b^2 \][/tex]

Thus, the correct answer is:

[tex]\[ \boxed{20 \pi b^3 + 12 \pi b^2} \][/tex]