In the long run, which plan has the higher payout?

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Plan A } \\
\hline Payout & [tex]$P$[/tex] (Payout) \\
\hline [tex]$-\$[/tex]10,000[tex]$ & 0.61 \\
\hline $[/tex]\[tex]$25,000$[/tex] & 0.15 \\
\hline [tex]$\$[/tex]55,000[tex]$ & 0.24 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Plan B } \\
\hline Payout & $[/tex]P([tex]$Payout$[/tex])[tex]$ \\
\hline $[/tex]-\[tex]$15,000$[/tex] & 0.16 \\
\hline [tex]$-\$[/tex]10,000[tex]$ & 0.43 \\
\hline $[/tex]\[tex]$30,000$[/tex] & 0.41 \\
\hline
\end{tabular}



Answer :

To determine which plan has the higher payout in the long run, we'll calculate the expected value for each plan. The expected value of a plan is the sum of the products of each payout and its corresponding probability.

We start with Plan A, which has the following payouts and probabilities:
- [tex]$\$[/tex] -10,000[tex]$ with a probability of 0.61 - $[/tex]\[tex]$ 25,000$[/tex] with a probability of 0.15
- [tex]$\$[/tex] 55,000[tex]$ with a probability of 0.24 Calculating the expected value for Plan A: \[ \text{Expected Value of Plan A} = (-\$[/tex]10,000 \times 0.61) + (\[tex]$25,000 \times 0.15) + (\$[/tex]55,000 \times 0.24)
\]
From previous calculations, the expected value of Plan A is:
[tex]\[ \$10,850 \][/tex]

Next, we consider Plan B, which has the following payouts and probabilities:
- [tex]$\$[/tex] -15,000[tex]$ with a probability of 0.16 - $[/tex]\[tex]$ -10,000$[/tex] with a probability of 0.43
- [tex]$\$[/tex] 30,000[tex]$ with a probability of 0.41 Calculating the expected value for Plan B: \[ \text{Expected Value of Plan B} = (-\$[/tex]15,000 \times 0.16) + (-\[tex]$10,000 \times 0.43) + (\$[/tex]30,000 \times 0.41)
\]
From previous calculations, the expected value of Plan B is:
[tex]\[ \$5,600 \][/tex]

Comparing the two expected values:
- Plan A: \[tex]$10,850 - Plan B: \$[/tex]5,600

In the long run, Plan A has a higher payout with an expected value of \[tex]$10,850 compared to Plan B's expected value of \$[/tex]5,600. Therefore, Plan A is the better choice for a higher payout in the long run.