Answer :
To determine the values of the function [tex]\( h \)[/tex] at [tex]\( x = 0 \)[/tex] and [tex]\( x = 4 \)[/tex], we must carefully consider the given piecewise function and evaluate it at each specific point.
The definition of the function [tex]\( h(x) \)[/tex] is:
[tex]\[ h(x)=\left\{\begin{array}{ll} 3 x - 4, & x < 0 \\ 2 x^2 - 3 x + 10, & 0 \leq x < 4 \\ 2^x, & x \geq 4 \end{array}\right. \][/tex]
Step 1: Calculate [tex]\( h(0) \)[/tex]
Since [tex]\( 0 \leq 0 < 4 \)[/tex], we use the second piece of the piecewise function:
[tex]\[ h(x) = 2x^2 - 3x + 10, \quad 0 \leq x < 4. \][/tex]
Substitute [tex]\( x = 0 \)[/tex] into this expression:
[tex]\[ h(0) = 2(0)^2 - 3(0) + 10 = 0 - 0 + 10 = 10. \][/tex]
Thus,
[tex]\[ h(0) = 10. \][/tex]
Step 2: Calculate [tex]\( h(4) \)[/tex]
Since [tex]\( x = 4 \geq 4 \)[/tex], we use the third piece of the piecewise function:
[tex]\[ h(x) = 2^x, \quad x \geq 4. \][/tex]
Substitute [tex]\( x = 4 \)[/tex] into this expression:
[tex]\[ h(4) = 2^4 = 16. \][/tex]
Thus,
[tex]\[ h(4) = 16. \][/tex]
Summary of Results:
[tex]\[ \begin{array}{l} h(0) = 10 \\ h(4) = 16 \end{array} \][/tex]
The definition of the function [tex]\( h(x) \)[/tex] is:
[tex]\[ h(x)=\left\{\begin{array}{ll} 3 x - 4, & x < 0 \\ 2 x^2 - 3 x + 10, & 0 \leq x < 4 \\ 2^x, & x \geq 4 \end{array}\right. \][/tex]
Step 1: Calculate [tex]\( h(0) \)[/tex]
Since [tex]\( 0 \leq 0 < 4 \)[/tex], we use the second piece of the piecewise function:
[tex]\[ h(x) = 2x^2 - 3x + 10, \quad 0 \leq x < 4. \][/tex]
Substitute [tex]\( x = 0 \)[/tex] into this expression:
[tex]\[ h(0) = 2(0)^2 - 3(0) + 10 = 0 - 0 + 10 = 10. \][/tex]
Thus,
[tex]\[ h(0) = 10. \][/tex]
Step 2: Calculate [tex]\( h(4) \)[/tex]
Since [tex]\( x = 4 \geq 4 \)[/tex], we use the third piece of the piecewise function:
[tex]\[ h(x) = 2^x, \quad x \geq 4. \][/tex]
Substitute [tex]\( x = 4 \)[/tex] into this expression:
[tex]\[ h(4) = 2^4 = 16. \][/tex]
Thus,
[tex]\[ h(4) = 16. \][/tex]
Summary of Results:
[tex]\[ \begin{array}{l} h(0) = 10 \\ h(4) = 16 \end{array} \][/tex]