What are the values of the three trigonometric ratios for angle [tex]L[/tex], in simplest form?

[tex]\[
\begin{array}{l}
\sin (L) = \frac{4}{5} \\
\cos (L) = 0 \\
\tan (L) = 0
\end{array}
\][/tex]



Answer :

To find the trigonometric ratios for angle [tex]\( L \)[/tex], we need to determine the values of sine, cosine, and tangent based on the given information.

1. Sine ([tex]\(\sin\)[/tex]):
[tex]\[\sin(L) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{4}{5}.\][/tex]
Simplifying this, we have:
[tex]\[\sin(L) = 0.8.\][/tex]

2. Cosine ([tex]\(\cos\)[/tex]):
[tex]\[\cos(L) = \frac{\text{adjacent}}{\text{hypotenuse}} = 0.\][/tex]

3. Tangent ([tex]\(\tan\)[/tex]):
[tex]\[\tan(L) = \frac{\text{opposite}}{\text{adjacent}} = 0.\][/tex]

Putting these values together, the trigonometric ratios for angle [tex]\( L \)[/tex] are:

- [tex]\(\sin(L) = 0.8\)[/tex]
- [tex]\(\cos(L) = 0\)[/tex]
- [tex]\(\tan(L) = 0\)[/tex]

These values represent the simplest form of the trigonometric ratios for angle [tex]\( L \)[/tex].