Use substitution to solve the system.

[tex]\[
\begin{aligned}
x & = 3y + 10 \\
-3x + 5y & = -18
\end{aligned}
\][/tex]

[tex]\[
x = \ \square
\][/tex]

[tex]\[
y = \ \square
\][/tex]



Answer :

To solve the given system of linear equations using substitution, follow these steps:

Given the system:
[tex]\[ \begin{aligned} x & = 3y + 10 \quad \text{(Equation 1)} \\ -3x + 5y & = -18 \quad \text{(Equation 2)} \end{aligned} \][/tex]

1. From Equation 1:
[tex]\[ x = 3y + 10 \][/tex]
We already have [tex]\( x \)[/tex] expressed in terms of [tex]\( y \)[/tex].

2. Substitute [tex]\( x \)[/tex] from Equation 1 into Equation 2:
[tex]\[ -3(3y + 10) + 5y = -18 \][/tex]

3. Simplify the equation:
[tex]\[ -9y - 30 + 5y = -18 \][/tex]
Combine the terms involving [tex]\( y \)[/tex]:
[tex]\[ -4y - 30 = -18 \][/tex]

4. Isolate [tex]\( y \)[/tex]:
[tex]\[ -4y = -18 + 30 \][/tex]
[tex]\[ -4y = 12 \][/tex]
Divide both sides by -4:
[tex]\[ y = -3 \][/tex]

5. Substitute [tex]\( y = -3 \)[/tex] back into Equation 1 to find [tex]\( x \)[/tex]:
[tex]\[ x = 3(-3) + 10 \][/tex]
[tex]\[ x = -9 + 10 \][/tex]
[tex]\[ x = 1 \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ x = 1 \][/tex]
[tex]\[ y = -3 \][/tex]