Solve for [tex]$x$[/tex]:

[tex]\ln 2 + \ln (x+2) = -2[/tex]

Do not round any intermediate computations.

[tex]x = \square[/tex]



Answer :

To solve the equation [tex]\(\ln 2 + \ln (x + 2) = -2\)[/tex] for [tex]\(x\)[/tex], follow these step-by-step instructions:

1. Combine the logarithmic terms on the left side of the equation using the property of logarithms that states [tex]\(\ln a + \ln b = \ln(ab)\)[/tex]:
[tex]\[ \ln(2) + \ln(x + 2) = \ln(2(x + 2)) \][/tex]

2. Substitute this back into the equation, resulting in:
[tex]\[ \ln(2(x + 2)) = -2 \][/tex]

3. Exponentiate both sides to eliminate the natural logarithm (remembering that [tex]\(e^{\ln y} = y\)[/tex]):
[tex]\[ 2(x + 2) = e^{-2} \][/tex]

4. Solve for [tex]\(x\)[/tex] by isolating [tex]\(x\)[/tex]. First, divide both sides by 2:
[tex]\[ x + 2 = \frac{e^{-2}}{2} \][/tex]

5. Subtract 2 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{e^{-2}}{2} - 2 \][/tex]

6. Simplify the right side of the equation:
[tex]\[ x = -2 + \frac{e^{-2}}{2} \][/tex]

Thus, the solution to the equation [tex]\(\ln 2 + \ln (x + 2) = -2\)[/tex] is:
[tex]\[ x = -2 + \frac{e^{-2}}{2} \][/tex]