If [tex]JM = 5x - 8[/tex] and [tex]LM = 2x - 6[/tex], which expression represents [tex]JL[/tex]?

A. [tex]3x - 2[/tex]
B. [tex]3x - 14[/tex]
C. [tex]7x - 2[/tex]
D. [tex]7x - 14[/tex]



Answer :

Certainly! Let's solve the problem step-by-step.

We are given:
[tex]\[ JM = 5x - 8 \][/tex]
[tex]\[ LM = 2x - 6 \][/tex]

We need to combine these to form the expression for [tex]\( JL \)[/tex].

To find [tex]\( JL \)[/tex], we sum up JM and LM:
[tex]\[ JL = JM + LM \][/tex]

Now, substitute the given expressions for JM and LM:
[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

Combine the like terms (terms involving [tex]\( x \)[/tex] and constant terms):
[tex]\[ JL = 5x + 2x - 8 - 6 \][/tex]
[tex]\[ JL = 7x - 14 \][/tex]

Hence, the expression that represents [tex]\( JL \)[/tex] is:
[tex]\[ 7x - 14 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{7x - 14} \][/tex]