If the expression [tex]4 x^{\frac{2}{3}} y^4 \sqrt[3]{x y^3}[/tex] is written in the form [tex]a x^b y^c[/tex], then what is the product of [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex]?



Answer :

To solve the given expression [tex]\(4 x^{\frac{2}{3}} y^4 \sqrt[3]{x y^3}\)[/tex] and write it in the form [tex]\(a x^b y^c\)[/tex], we need to follow several steps. Here is the detailed solution:

1. Simplify the term inside the cube root:
- We have [tex]\( \sqrt[3]{x y^3} \)[/tex].
- Using the properties of exponents to distribute the cube root, we get:
[tex]\[ \sqrt[3]{x y^3} = (x y^3)^{\frac{1}{3}} \][/tex]
[tex]\[ (x y^3)^{\frac{1}{3}} = x^{\frac{1}{3}} \cdot y \][/tex]

2. Substitute back into the original expression:
- The original expression is:
[tex]\[ 4 x^{\frac{2}{3}} y^4 \sqrt[3]{x y^3} \][/tex]
- Substituting the simplified cube root term, we get:
[tex]\[ 4 x^{\frac{2}{3}} y^4 (x^{\frac{1}{3}} y) \][/tex]

3. Combine the exponents for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
- First, combine the [tex]\(x\)[/tex] terms:
[tex]\[ x^{\frac{2}{3}} \cdot x^{\frac{1}{3}} = x^{\frac{2}{3} + \frac{1}{3}} = x^1 = x \][/tex]

- Next, combine the [tex]\(y\)[/tex] terms:
[tex]\[ y^4 \cdot y = y^{4+1} = y^5 \][/tex]

4. Put it all together:
- After combining the terms, the expression is simplified to:
[tex]\[ 4 x y^5 \][/tex]

5. Identify the coefficients and exponents:
- Now, the expression is in the form [tex]\(a x^b y^c\)[/tex], where:
- [tex]\(a = 4\)[/tex],
- [tex]\(b = 1\)[/tex],
- [tex]\(c = 5\)[/tex].

6. Calculate the product [tex]\(a \cdot b \cdot c\)[/tex]:
- The product of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] is:
[tex]\[ 4 \cdot 1 \cdot 5 = 20 \][/tex]

Therefore, the product of [tex]\(a, b\)[/tex], and [tex]\(c\)[/tex] is [tex]\(\boxed{20}\)[/tex].