Answer :

To solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the given system of equations and then find the value of [tex]\( x + 4 \)[/tex], we follow these steps:

We start with the system of linear equations:
[tex]\[ 2x + 17y = 63 \quad \text{(1)} \][/tex]
[tex]\[ 17x + 28y = 62 \quad \text{(2)} \][/tex]

First, we need to solve the system to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

Through solving the system of equations simultaneously, we get:
[tex]\[ x = -\frac{710}{233} \][/tex]
[tex]\[ y = \frac{947}{233} \][/tex]

Next, we are required to find the value of [tex]\( x + 4 \)[/tex].

Now, we substitute the value of [tex]\( x \)[/tex] into the expression [tex]\( x + 4 \)[/tex]:
[tex]\[ x + 4 = -\frac{710}{233} + 4 \][/tex]

To simplify this expression, we get a common denominator for the fractions:
[tex]\[ 4 = \frac{4 \times 233}{233} = \frac{932}{233} \][/tex]

So,
[tex]\[ x + 4 = -\frac{710}{233} + \frac{932}{233} \][/tex]
[tex]\[ x + 4 = \frac{-710 + 932}{233} \][/tex]
[tex]\[ x + 4 = \frac{222}{233} \][/tex]

Therefore, the value of [tex]\( x + 4 \)[/tex] is:
[tex]\[ \boxed{\frac{222}{233}} \][/tex]

Thus, the detailed steps lead us to conclude that [tex]\( x + 4 = \frac{222}{233} \)[/tex].