Select the correct answer.

Which function defines [tex]$(g \cdot f)(x)$[/tex]?

[tex]\[
\begin{array}{l}
f(x) = \log(5x) \\
g(x) = 5x + 4
\end{array}
\][/tex]

A. [tex]$(g \cdot f)(x) = 5x + 4 + \log(5x)$[/tex]

B. [tex]$(g \cdot f)(x) = 5x \log(5x) + 4$[/tex]

C. [tex]$(g \cdot f)(x) = 5x \log(5x) + 4 \log(5x)$[/tex]

D. [tex][tex]$(g \cdot f)(x) = 5x - 4 - \log(5x)$[/tex][/tex]



Answer :

To determine which function defines [tex]\((g \cdot f)(x)\)[/tex], we need to evaluate the composition of the given functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].

Here are the given functions:
[tex]\[ f(x) = \log(5x) \][/tex]
[tex]\[ g(x) = 5x + 4 \][/tex]

The composition [tex]\((g \cdot f)(x)\)[/tex] means we need to apply [tex]\(f(x)\)[/tex] first and then apply [tex]\(g\)[/tex] to the result of [tex]\(f(x)\)[/tex].

Let's find [tex]\(f(x)\)[/tex] first:
[tex]\[ f(x) = \log(5x) \][/tex]

Next, we need to find [tex]\(g(f(x))\)[/tex]. This involves substituting [tex]\(f(x)\)[/tex] into [tex]\(g(x)\)[/tex]:
[tex]\[ g(f(x)) = g(\log(5x)) \][/tex]

Substitute [tex]\(\log(5x)\)[/tex] into [tex]\(g(y)\)[/tex]:
[tex]\[ g(y) = 5y + 4 \quad \text{where } y = \log(5x) \][/tex]
Thus,
[tex]\[ g(\log(5x)) = 5 \cdot \log(5x) + 4 \][/tex]

So, the composition function [tex]\((g \cdot f)(x)\)[/tex] is:
[tex]\[ (g \cdot f)(x) = 5 \log(5x) + 4 \][/tex]

None of the provided answer choices exactly match the result of the composition function we derived. Thus, the correct answer is:

[tex]\[ \boxed{\text{None of the given options match the derived composition function.}} \][/tex]