Suppose that the functions [tex]g[/tex] and [tex]h[/tex] are defined for all real numbers [tex]x[/tex] as follows:

[tex]
\begin{array}{l}
g(x) = x - 2 \\
h(x) = 4x + 4
\end{array}
[/tex]

Write the expressions for [tex](g+h)(x)[/tex] and [tex](g \cdot h)(x)[/tex], and evaluate [tex](g-h)(-1)[/tex].

[tex]
\begin{array}{l}
(g+h)(x) = 5x + 2 \\
(g \cdot h)(x) = \square \\
(g-h)(-1) = \square
\end{array}
[/tex]



Answer :

Let's solve the problem step by step.

We are given the functions:
[tex]\[ g(x) = x - 2 \][/tex]
[tex]\[ h(x) = 4x + 4 \][/tex]

### Step 1: Find [tex]\((g + h)(x)\)[/tex]
First, let's find the expression for [tex]\( (g + h)(x) \)[/tex].

[tex]\[ (g + h)(x) = g(x) + h(x) \][/tex]

Substitute the given functions:

[tex]\[ (g + h)(x) = (x - 2) + (4x + 4) \][/tex]

Combine like terms:

[tex]\[ (g + h)(x) = x - 2 + 4x + 4 \][/tex]
[tex]\[ (g + h)(x) = 5x + 2 \][/tex]

So, the expression for [tex]\( (g + h)(x) \)[/tex] is:
[tex]\[ (g + h)(x) = 5x + 2 \][/tex]

### Step 2: Find [tex]\((g \cdot h)(x)\)[/tex]
Next, let's find the expression for [tex]\( (g \cdot h)(x) \)[/tex].

[tex]\[ (g \cdot h)(x) = g(x) \cdot h(x) \][/tex]

Substitute the given functions:

[tex]\[ (g \cdot h)(x) = (x - 2) \cdot (4x + 4) \][/tex]

Expand the expression by distributing:

[tex]\[ (g \cdot h)(x) = x \cdot (4x + 4) - 2 \cdot (4x + 4) \][/tex]
[tex]\[ (g \cdot h)(x) = 4x^2 + 4x - 8x - 8 \][/tex]
[tex]\[ (g \cdot h)(x) = 4x^2 - 4x - 8 \][/tex]

So, the expression for [tex]\( (g \cdot h)(x) \)[/tex] is:
[tex]\[ (g \cdot h)(x) = 4x^2 - 4x - 8 \][/tex]

### Step 3: Evaluate [tex]\((g - h)(-1)\)[/tex]
Finally, let's evaluate [tex]\((g - h)(-1)\)[/tex].

First, find [tex]\( g(-1) \)[/tex] and [tex]\( h(-1) \)[/tex]:

[tex]\[ g(-1) = -1 - 2 = -3 \][/tex]
[tex]\[ h(-1) = 4(-1) + 4 = -4 + 4 = 0 \][/tex]

Now, compute [tex]\( (g - h)(-1) \)[/tex]:

[tex]\[ (g - h)(-1) = g(-1) - h(-1) \][/tex]
[tex]\[ (g - h)(-1) = -3 - 0 \][/tex]
[tex]\[ (g - h)(-1) = -3 \][/tex]

### Summary
- The expression for [tex]\( (g + h)(x) \)[/tex] is:
[tex]\[ (g + h)(x) = 5x + 2 \][/tex]

- The expression for [tex]\( (g \cdot h)(x) \)[/tex] is:
[tex]\[ (g \cdot h)(x) = 4x^2 - 4x - 8 \][/tex]

- The value of [tex]\( (g - h)(-1) \)[/tex] is:
[tex]\[ (g - h)(-1) = -3 \][/tex]