What is the product?

[tex]\[ -9x(5 - 2x) \][/tex]

A. [tex]\(-18x^2 + 45x\)[/tex]

B. [tex]\(-18x^2 - 45x\)[/tex]

C. [tex]\(-18x - 45x\)[/tex]

D. [tex]\(18x - 45x\)[/tex]



Answer :

To find the product of [tex]\(-9x(5 - 2x)\)[/tex], follow these steps:

1. Distribute [tex]\(-9x\)[/tex] to both terms inside the parentheses [tex]\(5 - 2x\)[/tex].

2. First, multiply [tex]\(-9x\)[/tex] by [tex]\(5\)[/tex]:

[tex]\[ -9x \times 5 = -45x \][/tex]

3. Next, multiply [tex]\(-9x\)[/tex] by [tex]\(-2x\)[/tex]:

[tex]\[ -9x \times -2x = 18x^2 \][/tex]

4. Combine these two results to get the expanded form of the expression:

[tex]\[ -45x + 18x^2 \][/tex]

5. Rewriting the terms in order of descending powers of [tex]\(x\)[/tex], we get:

[tex]\[ 18x^2 - 45x \][/tex]

Therefore, the product of [tex]\(-9x(5 - 2x)\)[/tex] is

[tex]\[ 18x^2 - 45x \][/tex]

This matches the option:
[tex]\[ 18 x^2-45 x \][/tex]