To find the product of [tex]\(-9x(5 - 2x)\)[/tex], follow these steps:
1. Distribute [tex]\(-9x\)[/tex] to both terms inside the parentheses [tex]\(5 - 2x\)[/tex].
2. First, multiply [tex]\(-9x\)[/tex] by [tex]\(5\)[/tex]:
[tex]\[
-9x \times 5 = -45x
\][/tex]
3. Next, multiply [tex]\(-9x\)[/tex] by [tex]\(-2x\)[/tex]:
[tex]\[
-9x \times -2x = 18x^2
\][/tex]
4. Combine these two results to get the expanded form of the expression:
[tex]\[
-45x + 18x^2
\][/tex]
5. Rewriting the terms in order of descending powers of [tex]\(x\)[/tex], we get:
[tex]\[
18x^2 - 45x
\][/tex]
Therefore, the product of [tex]\(-9x(5 - 2x)\)[/tex] is
[tex]\[
18x^2 - 45x
\][/tex]
This matches the option:
[tex]\[
18 x^2-45 x
\][/tex]