Answer :
Sure, let's walk through the solution step-by-step.
To solve this problem, we use Charles's Law, which states that for a given quantity of gas at constant pressure, the volume is directly proportional to the temperature (measured in Kelvin). Mathematically, this is expressed as:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Given:
- Initial volume ([tex]\(V_1\)[/tex]) = 2.75 liters
- Initial temperature ([tex]\(T_1\)[/tex]) = 295 Kelvin
- Final volume ([tex]\(V_2\)[/tex]) = 5.00 liters
We need to find the final temperature ([tex]\(T_2\)[/tex]). Rearrange the equation to solve for [tex]\(T_2\)[/tex]:
[tex]\[ T_2 = \frac{V_2 \cdot T_1}{V_1} \][/tex]
Substitute the given values into the equation:
[tex]\[ T_2 = \frac{5.00 \, \text{L} \cdot 295 \, \text{K}}{2.75 \, \text{L}} \][/tex]
Now, calculate the value step-by-step:
1. Multiply [tex]\(5.00 \, \text{L}\)[/tex] by [tex]\(295 \, \text{K}\)[/tex]:
[tex]\[ 5.00 \times 295 = 1475 \][/tex]
2. Divide the result by [tex]\(2.75 \, \text{L}\)[/tex]:
[tex]\[ \frac{1475}{2.75} \approx 536.3636363636364 \, \text{K} \][/tex]
According to significant figure rules, since all given values ([tex]\(V_1\)[/tex], [tex]\(T_1\)[/tex], and [tex]\(V_2\)[/tex]) have 3 significant figures, the final temperature should also be rounded to 3 significant figures:
[tex]\[ T_2 \approx 536 \, \text{K} \][/tex]
Therefore, to increase the volume of the balloon to 5.00 liters, you would have to heat it to approximately 536 Kelvin.
To solve this problem, we use Charles's Law, which states that for a given quantity of gas at constant pressure, the volume is directly proportional to the temperature (measured in Kelvin). Mathematically, this is expressed as:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Given:
- Initial volume ([tex]\(V_1\)[/tex]) = 2.75 liters
- Initial temperature ([tex]\(T_1\)[/tex]) = 295 Kelvin
- Final volume ([tex]\(V_2\)[/tex]) = 5.00 liters
We need to find the final temperature ([tex]\(T_2\)[/tex]). Rearrange the equation to solve for [tex]\(T_2\)[/tex]:
[tex]\[ T_2 = \frac{V_2 \cdot T_1}{V_1} \][/tex]
Substitute the given values into the equation:
[tex]\[ T_2 = \frac{5.00 \, \text{L} \cdot 295 \, \text{K}}{2.75 \, \text{L}} \][/tex]
Now, calculate the value step-by-step:
1. Multiply [tex]\(5.00 \, \text{L}\)[/tex] by [tex]\(295 \, \text{K}\)[/tex]:
[tex]\[ 5.00 \times 295 = 1475 \][/tex]
2. Divide the result by [tex]\(2.75 \, \text{L}\)[/tex]:
[tex]\[ \frac{1475}{2.75} \approx 536.3636363636364 \, \text{K} \][/tex]
According to significant figure rules, since all given values ([tex]\(V_1\)[/tex], [tex]\(T_1\)[/tex], and [tex]\(V_2\)[/tex]) have 3 significant figures, the final temperature should also be rounded to 3 significant figures:
[tex]\[ T_2 \approx 536 \, \text{K} \][/tex]
Therefore, to increase the volume of the balloon to 5.00 liters, you would have to heat it to approximately 536 Kelvin.