For [tex]\( z \neq 0 \)[/tex], which of the following expressions is equivalent to [tex]\(\frac{-50 z^2 + 35 z}{-45 z^2 + 40 z}\)[/tex]?

Choose 1 answer:
A. [tex]\(\frac{-10 z + 7}{-9 z + 8}\)[/tex]
B. [tex]\(\frac{10 z + 7}{9 z + 8}\)[/tex]
C. [tex]\(\frac{-10 z + 7}{-9 z - 8}\)[/tex]
D. [tex]\(\frac{-10 z + 35}{-9 z + 40}\)[/tex]



Answer :

To solve the problem, we need to simplify the given fraction [tex]\(\frac{-50 z^2 + 35 z}{-45 z^2 + 40 z}\)[/tex]. Let's break it down step-by-step:

1. Factor the numerator and the denominator:

The given fraction is [tex]\(\frac{-50 z^2 + 35 z}{-45 z^2 + 40 z}\)[/tex].

- First, factor out the greatest common factor (GCF) from the numerator [tex]\(-50 z^2 + 35 z\)[/tex]:
[tex]\[ -50 z^2 + 35 z = 5z (-10z + 7) \][/tex]

- Next, factor out the greatest common factor (GCF) from the denominator [tex]\(-45 z^2 + 40 z\)[/tex]:
[tex]\[ -45 z^2 + 40 z = 5z (-9z + 8) \][/tex]

So, the expression can be rewritten using these factorizations:
[tex]\[ \frac{-50 z^2 + 35 z}{-45 z^2 + 40 z} = \frac{5z (-10z + 7)}{5z (-9z + 8)} \][/tex]

2. Simplify the fraction:

Since [tex]\(5z\)[/tex] is a common factor in both the numerator and the denominator, we can cancel it out (provided [tex]\(z \neq 0\)[/tex]):
[tex]\[ \frac{5z (-10z + 7)}{5z (-9z + 8)} = \frac{-10z + 7}{-9z + 8} \][/tex]

3. Conclusion:

The simplified expression is [tex]\(\frac{-10z + 7}{-9z + 8}\)[/tex].

Therefore, the expression that is equivalent to [tex]\(\frac{-50 z^2 + 35 z}{-45 z^2 + 40 z}\)[/tex] is given by answer choice:

(A) [tex]\(\frac{-10 z+7}{-9 z+8}\)[/tex]