Which of the following expressions is equivalent to [tex]\frac{72}{-24z-8}[/tex]?

Choose 1 answer:

A. [tex]\frac{9}{3z+1}[/tex]

B. [tex]\frac{9}{-3z-1}[/tex]

C. [tex]\frac{9}{-3z+1}[/tex]

D. [tex]\frac{9}{-3z-8}[/tex]



Answer :

To determine the expression equivalent to [tex]\(\frac{72}{-24z-8}\)[/tex], let's simplify it step-by-step.

First, write the given expression:
[tex]\[ \frac{72}{-24z-8} \][/tex]

Next, factor the denominator. Observe that both terms in the denominator, [tex]\(-24z\)[/tex] and [tex]\(-8\)[/tex], have a common factor of [tex]\(-8\)[/tex]:
[tex]\[ -24z - 8 = -8(3z + 1) \][/tex]

Now, substitute this factor back into the expression:
[tex]\[ \frac{72}{-8(3z + 1)} \][/tex]

We can simplify the fraction by dividing the numerator by [tex]\(-8\)[/tex] and then expressing the result with the simplified denominator:
[tex]\[ \frac{72}{-8(3z + 1)} = \frac{72}{-8} \cdot \frac{1}{3z + 1} \][/tex]

Simplify [tex]\(\frac{72}{-8}\)[/tex]:
[tex]\[ \frac{72}{-8} = -9 \][/tex]

This simplifies the entire expression to:
[tex]\[ \frac{-9}{3z + 1} = \frac{9}{-3z - 1} \][/tex]

Putting it all together, we have:
[tex]\[ \frac{72}{-24z - 8} = \frac{9}{-3z - 1} \][/tex]

So, the equivalent expression is:
[tex]\[ \boxed{\frac{9}{-3z - 1}} \][/tex]

Hence, the correct answer is:
(B) [tex]\(\frac{9}{-3z-1}\)[/tex]