Given expression:
[tex]\[ \frac{p+7}{7} - \frac{p-7}{7} \][/tex]

Which of the following is equivalent to the given expression?

Choose one answer:
A. [tex]\(\frac{p-p}{7}\)[/tex]
B. [tex]\(\frac{p+p}{7}\)[/tex]
C. [tex]\(\frac{7+7}{7}\)[/tex]
D. [tex]\(\frac{7-7}{7}\)[/tex]



Answer :

To determine which of the given options is equivalent to the expression [tex]\(\frac{p+7}{7} - \frac{p-7}{7}\)[/tex], let's simplify the expression step-by-step.

1. Write the given expression:

[tex]\[ \frac{p+7}{7} - \frac{p-7}{7} \][/tex]

2. Combine the terms over a common denominator:

Since both terms already have the same denominator (7), we can combine them directly:

[tex]\[ \frac{(p+7) - (p-7)}{7} \][/tex]

3. Distribute and simplify the numerator:

Simplify the expression inside the numerator:

[tex]\[ (p + 7) - (p - 7) \][/tex]

This becomes:

[tex]\[ p + 7 - p + 7 \][/tex]

Combine like terms:

[tex]\[ p - p + 7 + 7 = 0 + 14 = 14 \][/tex]

So, the simplified numerator is 14.

4. Write the simplified expression with the new numerator:

[tex]\[ \frac{14}{7} \][/tex]

5. Simplify the fraction:

[tex]\[ \frac{14}{7} = 2 \][/tex]

Given this simplification, we need to check which option matches the value 2.

- (A) [tex]\(\frac{p - p}{7} = \frac{0}{7} = 0\)[/tex]

- (B) [tex]\(\frac{p + p}{7} = \frac{2p}{7}\)[/tex] (This is not a constant and does not equal 2)

- (C) [tex]\(\frac{7 + 7}{7} = \frac{14}{7} = 2\)[/tex]

- (D) [tex]\(\frac{7 - 7}{7} = \frac{0}{7} = 0\)[/tex]

The option that equals 2 is (C).

Thus, the equivalent expression to [tex]\(\frac{p+7}{7} - \frac{p-7}{7}\)[/tex] is:

(C) [tex]\(\frac{7+7}{7}\)[/tex]