If [tex]\frac{4a}{b}=12[/tex], which of the following expressions is equivalent to [tex]a[/tex]?

Choose 1 answer:

A. [tex]\frac{48}{b}[/tex]
B. [tex]3b[/tex]
C. [tex]12b[/tex]
D. [tex]48b[/tex]



Answer :

To find an expression equivalent to [tex]\( a \)[/tex] given the equation [tex]\(\frac{4a}{b} = 12\)[/tex], let's solve this step-by-step:

1. Step 1: Start with the given equation.
[tex]\[ \frac{4a}{b} = 12 \][/tex]

2. Step 2: Isolate [tex]\( a \)[/tex].
To isolate [tex]\( a \)[/tex], we first need to get rid of the fraction by multiplying both sides of the equation by [tex]\( b \)[/tex]:
[tex]\[ 4a = 12b \][/tex]

3. Step 3: Solve for [tex]\( a \)[/tex].
Next, we divide both sides of the equation by 4 to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{12b}{4} \][/tex]

4. Step 4: Simplify the expression.
Simplify the right-hand side of the equation:
[tex]\[ a = 3b \][/tex]

So, the expression equivalent to [tex]\( a \)[/tex] is [tex]\( 3b \)[/tex].

Thus, the correct answer is:
(B) [tex]\( 3b \)[/tex]