A dog groomer charges a total price that is dependent on the weight of the dog. The function [tex]f(x)[/tex], representing the grooming fee in terms of weight [tex]x[/tex], is modeled below:

[tex]\[
f(x)=\left\{\begin{array}{cc}
45, & 0\ \textless \ x \leq 12 \\
55, & 12\ \textless \ x \leq 45 \\
55+3(x-45), & x\ \textgreater \ 45
\end{array}\right.
\][/tex]

Determine the grooming cost for a 60-pound dog.

A. \[tex]$115
B. \$[/tex]100
C. \[tex]$55
D. \$[/tex]45



Answer :

To determine the grooming cost for a 60-pound dog using the function [tex]\( f(x) \)[/tex], we need to evaluate which case from the piecewise function applies:

[tex]\[ f(x) = \left\{ \begin{array}{cc} 45, & 0 < x \leq 12 \\ 55, & 12 < x \leq 45 \\ 55 + 3(x - 45), & x > 45 \end{array} \right. \][/tex]

Given the weight of the dog, [tex]\(x = 60\)[/tex].

1. Check the conditions for [tex]\( f(x) \)[/tex]:
- [tex]\( 0 < x \leq 12 \)[/tex]: This does not apply, since [tex]\( x = 60 \)[/tex].
- [tex]\( 12 < x \leq 45 \)[/tex]: This does not apply, since [tex]\( x = 60 \)[/tex].

2. Apply the condition for [tex]\( x > 45 \)[/tex]:
- Since [tex]\( x = 60 \)[/tex] is greater than 45, we use the formula:

[tex]\[ f(x) = 55 + 3(x - 45) \][/tex]

3. Substitute [tex]\( x = 60 \)[/tex] into the expression:

[tex]\[ f(60) = 55 + 3(60 - 45) \][/tex]
[tex]\[ f(60) = 55 + 3(15) \][/tex]
[tex]\[ f(60) = 55 + 45 \][/tex]
[tex]\[ f(60) = 100 \][/tex]

Thus, the grooming cost for a 60-pound dog is:

[tex]\[ \boxed{100} \][/tex]