Answer :
To evaluate the expression [tex]\( |2x - 5| \)[/tex] for [tex]\( x = -3 \)[/tex] and [tex]\( x = 3 \)[/tex], let's proceed step-by-step.
### Case 1: [tex]\( x = -3 \)[/tex]
1. Substitute [tex]\( x = -3 \)[/tex] into the expression:
[tex]\[ |2(-3) - 5| \][/tex]
2. Simplify inside the absolute value:
[tex]\[ 2 \cdot (-3) = -6 \][/tex]
[tex]\[ -6 - 5 = -11 \][/tex]
3. Apply the absolute value:
[tex]\[ |-11| = 11 \][/tex]
So, for [tex]\( x = -3 \)[/tex], the value is 11.
### Case 2: [tex]\( x = 3 \)[/tex]
1. Substitute [tex]\( x = 3 \)[/tex] into the expression:
[tex]\[ |2(3) - 5| \][/tex]
2. Simplify inside the absolute value:
[tex]\[ 2 \cdot 3 = 6 \][/tex]
[tex]\[ 6 - 5 = 1 \][/tex]
3. Apply the absolute value:
[tex]\[ |1| = 1 \][/tex]
So, for [tex]\( x = 3 \)[/tex], the value is 1.
### Summary
The values of the expression [tex]\( |2x - 5| \)[/tex] for [tex]\( x = -3 \)[/tex] and [tex]\( x = 3 \)[/tex] are:
[tex]\[ 11 \text{ and } 1 \][/tex]
Hence, the correct answer is:
D) 11, 1
### Case 1: [tex]\( x = -3 \)[/tex]
1. Substitute [tex]\( x = -3 \)[/tex] into the expression:
[tex]\[ |2(-3) - 5| \][/tex]
2. Simplify inside the absolute value:
[tex]\[ 2 \cdot (-3) = -6 \][/tex]
[tex]\[ -6 - 5 = -11 \][/tex]
3. Apply the absolute value:
[tex]\[ |-11| = 11 \][/tex]
So, for [tex]\( x = -3 \)[/tex], the value is 11.
### Case 2: [tex]\( x = 3 \)[/tex]
1. Substitute [tex]\( x = 3 \)[/tex] into the expression:
[tex]\[ |2(3) - 5| \][/tex]
2. Simplify inside the absolute value:
[tex]\[ 2 \cdot 3 = 6 \][/tex]
[tex]\[ 6 - 5 = 1 \][/tex]
3. Apply the absolute value:
[tex]\[ |1| = 1 \][/tex]
So, for [tex]\( x = 3 \)[/tex], the value is 1.
### Summary
The values of the expression [tex]\( |2x - 5| \)[/tex] for [tex]\( x = -3 \)[/tex] and [tex]\( x = 3 \)[/tex] are:
[tex]\[ 11 \text{ and } 1 \][/tex]
Hence, the correct answer is:
D) 11, 1