Solve the following absolute value inequality.

[tex]\[ \frac{|x+6|}{8} \leq 1 \][/tex]

[tex]\[ x \leq 2 \][/tex]

[tex]\[ x \geq ? \][/tex]



Answer :

To solve the absolute value inequality [tex]\(\frac{|x+6|}{8} \leq 1\)[/tex], we follow these steps:

1. Start with the given inequality:

[tex]\[ \frac{|x+6|}{8} \leq 1 \][/tex]

2. Isolate the absolute value expression:

To remove the fraction, multiply both sides of the inequality by 8:

[tex]\[ |x+6| \leq 8 \][/tex]

3. Understand the absolute value inequality:

The inequality [tex]\(|x+6| \leq 8\)[/tex] can be interpreted as:

[tex]\[ -8 \leq x+6 \leq 8 \][/tex]

4. Break down the compound inequality into two separate inequalities:

[tex]\[ -8 \leq x+6 \quad \text{and} \quad x+6 \leq 8 \][/tex]

5. Solve each inequality separately:

- For [tex]\(-8 \leq x+6\)[/tex]:

Subtract 6 from both sides:

[tex]\[ -8 - 6 \leq x \][/tex]

Simplifying, we get:

[tex]\[ -14 \leq x \][/tex]

- For [tex]\(x+6 \leq 8\)[/tex]:

Subtract 6 from both sides:

[tex]\[ x \leq 8 - 6 \][/tex]

Simplifying, we get:

[tex]\[ x \leq 2 \][/tex]

6. Combine the two inequalities to find the solution set:

[tex]\[ -14 \leq x \leq 2 \][/tex]

Therefore, the value for [tex]\(x\)[/tex] such that [tex]\(\frac{|x+6|}{8} \leq 1\)[/tex] falls within the interval [tex]\([-14, 2]\)[/tex].

Given that [tex]\(x \leq 2\)[/tex] and [tex]\(x \geq [?]\)[/tex], we find that:

[tex]\[ x \geq -14 \][/tex]

So, the inequality:

[tex]\[ \frac{|x+6|}{8} \leq 1 \][/tex]

is equivalent to:

[tex]\[ -14 \leq x \leq 2 \][/tex]

Therefore, [tex]\(x \geq -14\)[/tex].