Carey creates the table below to help him determine [tex]75 \%[/tex] of 36.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{[tex]75 \%[/tex] of 36} \\
\hline [tex]25 \%[/tex] & [tex]25 \%[/tex] & [tex]25 \%[/tex] & [tex]25 \%[/tex] \\
\hline [tex]\frac{1}{4}[/tex] & [tex]\frac{1}{4}[/tex] & [tex]\frac{1}{4}[/tex] & [tex]\frac{1}{4}[/tex] \\
\hline 9 & 9 & 9 & 9 \\
\hline
\end{tabular}

He writes the expression [tex]\left(\frac{3}{4}\right)(27)[/tex]. Which change in Carey's expression will lead him to the correct answer?

A. The 27 could be changed to 36.

B. The [tex]\frac{3}{4}[/tex] could be changed to [tex]\frac{1}{4}[/tex].

C. The [tex]\frac{3}{4}[/tex] could be changed to [tex]\frac{1}{4}[/tex], and the 27 could be changed to 9.



Answer :

To determine [tex]\( 75\% \)[/tex] of 36, we can break this into a series of simple steps.

First, let’s understand what [tex]\( 75\% \)[/tex] means. [tex]\( 75\% \)[/tex] is the same as saying [tex]\( \frac{75}{100} \)[/tex] or [tex]\( \frac{3}{4} \)[/tex].

Thus, to find [tex]\( 75\% \)[/tex] of 36, we need to multiply 36 by [tex]\( \frac{3}{4} \)[/tex].

Let's follow these steps clearly:

1. Identify the fraction for [tex]\( 75\% \)[/tex]:
[tex]\[ 75\% = \frac{75}{100} = \frac{3}{4} \][/tex]

2. Multiply 36 by [tex]\( \frac{3}{4} \)[/tex]:
[tex]\[ \left(\frac{3}{4}\right) \times 36 \][/tex]

3. Perform the multiplication:
We can rewrite the multiplication for clarity:
[tex]\[ \left(\frac{3}{4}\right) \times 36 = \frac{3 \times 36}{4} \][/tex]

4. Simplify the expression:
[tex]\[ \frac{3 \times 36}{4} = \frac{108}{4} = 27 \][/tex]

So, [tex]\( 75\% \)[/tex] of 36 is 27.

Next, let's address the changes in Carey’s expression [tex]\(\left(\frac{3}{4}\right)(27)\)[/tex]:

Carey's expression [tex]\(\left(\frac{3}{4}\right)(27)\)[/tex] is incorrect because [tex]\( 75\% \)[/tex] (which is [tex]\(\frac{3}{4}\)[/tex]) should be applied to 36, not 27.

- The 27 should be changed to 36: The original problem asks for [tex]\( 75\% \)[/tex] of 36, not 27. Therefore, the change needed is to replace 27 with 36.
- The [tex]\(\frac{3}{4}\)[/tex] is correct: Since [tex]\( 75\% \)[/tex] corresponds to [tex]\(\frac{3}{4}\)[/tex], the fraction part of the expression is correct.

Thus, the corrected expression should be [tex]\(\left(\frac{3}{4}\right)(36)\)[/tex].

Conclusively, the change in Carey’s expression that will lead to the correct answer is: The 27 should be changed to 36.

Thus, the correct final expression is:
[tex]\[ \left(\frac{3}{4}\right)(36) = 27 \][/tex]

This ensures the accurate calculation of [tex]\( 75\% \)[/tex] of 36, which we have confirmed to be 27.