Given [tex]3 + 2i[/tex] is a root of a quadratic function, complete the following statements:

1. The other root, the conjugate, is [tex]3 - 2i[/tex].

2. The quadratic function is
[tex]\[ y = x^2 + \square x + \square \][/tex]

A. [tex]-3 + 2i[/tex]

B. [tex]3 - 2i[/tex]

C. [tex]3[/tex]

D. [tex]5[/tex]

E. [tex]-6[/tex]

F. [tex]2i[/tex]

G. [tex]13[/tex]

Choose the appropriate terms to complete the function.



Answer :

Given the root [tex]\(3 + 2i\)[/tex] of a quadratic function, we need to complete the following statements and determine the quadratic function.

1. The other root, the conjugate, is [tex]\(\square\)[/tex]:

When dealing with polynomials with real coefficients, if a complex number [tex]\(a + bi\)[/tex] is a root, then its complex conjugate [tex]\(a - bi\)[/tex] must also be a root.

Therefore, the other root, the conjugate, is [tex]\(3 - 2i\)[/tex].

2. The quadratic function [tex]\(y\)[/tex] is given by:

For a quadratic equation with roots [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex], the equation is:
[tex]\[ y = x^2 - (\alpha + \beta)x + \alpha\beta \][/tex]
Here, [tex]\(\alpha\)[/tex] is [tex]\(3 + 2i\)[/tex] and [tex]\(\beta\)[/tex] is [tex]\(3 - 2i\)[/tex].

- Sum of the roots [tex]\((\alpha + \beta)\)[/tex]:
[tex]\[ (3 + 2i) + (3 - 2i) = 3 + 3 + 2i - 2i = 6 \][/tex]

- Product of the roots [tex]\((\alpha \beta)\)[/tex]:
[tex]\[ (3 + 2i)(3 - 2i) = 3^2 - (2i)^2 = 9 - (4(-1)) = 9 + 4 = 13 \][/tex]

Therefore, the quadratic function is:
[tex]\[ y = x^2 - 6x + 13 \][/tex]

To summarize, the statements can be completed as follows:

The other root, the conjugate, is [tex]\(3 - 2i\)[/tex].

The quadratic function is:
[tex]\[ y = x^2 - 6x + 13 \][/tex]