Answer :
Let's analyze the tables to determine the values of [tex]\( m \)[/tex] and [tex]\( n \)[/tex].
### First Table
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & & 25 & m & 51 \\ \hline y & 10 & 11 & 12 & 13 & & n & 39 & 60 \\ \hline \end{array} \][/tex]
To identify the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \begin{align*} x = 1 & \implies y = 10 \\ x = 2 & \implies y = 11 \\ x = 3 & \implies y = 12 \\ x = 4 & \implies y = 13 \\ \end{align*} \][/tex]
The consistent pattern here shows that [tex]\( y = x + 9 \)[/tex].
Given [tex]\( y = 25 \)[/tex]:
[tex]\[ m = 25 + 9 = 34 \][/tex]
Now with [tex]\( x = m = 34 \)[/tex], let's find [tex]\( n \)[/tex]:
### Second Table
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & & m & 30 & 60 \\ \hline y & 2 & 4 & 6 & 8 & & 22 & n & 120 \\ \hline \end{array} \][/tex]
Identifying the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \begin{align*} x = 1 & \implies y = 2 \\ x = 2 & \implies y = 4 \\ x = 3 & \implies y = 6 \\ x = 4 & \implies y = 8 \\ \end{align*} \][/tex]
The consistent pattern here shows that [tex]\( y = 2x \)[/tex].
Now with [tex]\( x = m = 34 \)[/tex], we find [tex]\( n \)[/tex]:
[tex]\[ n = 2 \times 34 = 68 \][/tex]
### Final Intermediate Results and Conclusion
So, from the patterns and given calculations:
- The value of [tex]\( m \)[/tex] is 34.
- The value of [tex]\( n \)[/tex] is 68.
Thus:
[tex]\[ m = 34 \][/tex]
[tex]\[ n = 68 \][/tex]
### First Table
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & & 25 & m & 51 \\ \hline y & 10 & 11 & 12 & 13 & & n & 39 & 60 \\ \hline \end{array} \][/tex]
To identify the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \begin{align*} x = 1 & \implies y = 10 \\ x = 2 & \implies y = 11 \\ x = 3 & \implies y = 12 \\ x = 4 & \implies y = 13 \\ \end{align*} \][/tex]
The consistent pattern here shows that [tex]\( y = x + 9 \)[/tex].
Given [tex]\( y = 25 \)[/tex]:
[tex]\[ m = 25 + 9 = 34 \][/tex]
Now with [tex]\( x = m = 34 \)[/tex], let's find [tex]\( n \)[/tex]:
### Second Table
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & & m & 30 & 60 \\ \hline y & 2 & 4 & 6 & 8 & & 22 & n & 120 \\ \hline \end{array} \][/tex]
Identifying the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \begin{align*} x = 1 & \implies y = 2 \\ x = 2 & \implies y = 4 \\ x = 3 & \implies y = 6 \\ x = 4 & \implies y = 8 \\ \end{align*} \][/tex]
The consistent pattern here shows that [tex]\( y = 2x \)[/tex].
Now with [tex]\( x = m = 34 \)[/tex], we find [tex]\( n \)[/tex]:
[tex]\[ n = 2 \times 34 = 68 \][/tex]
### Final Intermediate Results and Conclusion
So, from the patterns and given calculations:
- The value of [tex]\( m \)[/tex] is 34.
- The value of [tex]\( n \)[/tex] is 68.
Thus:
[tex]\[ m = 34 \][/tex]
[tex]\[ n = 68 \][/tex]