Use the marginal tax rate chart to answer the question.

Marginal Tax Rate Chart
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Tax Bracket } & Marginal Tax Rate \\
\hline [tex]$\$[/tex]0-\[tex]$10,275$[/tex] & [tex]$10\%$[/tex] \\
\hline [tex]$\$[/tex]10,276-\[tex]$41,175$[/tex] & [tex]$12\%$[/tex] \\
\hline [tex]$\$[/tex]41,176-\[tex]$89,075$[/tex] & [tex]$22\%$[/tex] \\
\hline [tex]$\$[/tex]89,076-\[tex]$170,050$[/tex] & [tex]$24\%$[/tex] \\
\hline [tex]$\$[/tex]170,051-\[tex]$215,950$[/tex] & [tex]$32\%$[/tex] \\
\hline [tex]$\$[/tex]215,951-\[tex]$539,900$[/tex] & [tex]$35\%$[/tex] \\
\hline [tex]$\ \textgreater \ \$[/tex]539,901[tex]$ & $[/tex]37\%[tex]$ \\
\hline
\end{tabular}

Determine the effective tax rate for a taxable income of $[/tex]\[tex]$145,690$[/tex]. Round the final answer to the nearest hundredth.

A. [tex]$24.39\%$[/tex]

B. [tex]$22.00\%$[/tex]

C. [tex]$19.81\%$[/tex]

D. [tex]$17.00\%$[/tex]



Answer :

To determine the effective tax rate for a taxable income of [tex]$145,690, we will use the marginal tax rate chart provided. The chart shows how income is taxed at different rates based on the income brackets. Here is the step-by-step process to calculate the total tax and then the effective tax rate: 1. Determine how much income falls into each bracket: - The first $[/tex]10,275 is taxed at 10%.
- The income from [tex]$10,276 to $[/tex]41,175 is taxed at 12%.
- The income from [tex]$41,176 to $[/tex]89,075 is taxed at 22%.
- The income from [tex]$89,076 to $[/tex]145,690 is taxed at 24%.

2. Calculate the tax for each portion:
- For the first bracket ([tex]$0 - $[/tex]10,275):
[tex]\[ 10,275 \times 0.10 = 1,027.50 \][/tex]
- For the second bracket ([tex]$10,276 - $[/tex]41,175):
[tex]\[ (41,175 - 10,275) \times 0.12 = 30,900 \times 0.12 = 3,708 \][/tex]
- For the third bracket ([tex]$41,176 - $[/tex]89,075):
[tex]\[ (89,075 - 41,175) \times 0.22 = 47,900 \times 0.22 = 10,538 \][/tex]
- For the fourth bracket ([tex]$89,076 - $[/tex]145,690):
[tex]\[ (145,690 - 89,075) \times 0.24 = 56,615 \times 0.24 = 13,587.60 \][/tex]

3. Sum the tax from each bracket to find the total tax:
[tex]\[ 1,027.50 + 3,708 + 10,538 + 13,587.60 = 28,861.10 \][/tex]

4. Calculate the effective tax rate:
[tex]\[ \left(\frac{28,861.10}{145,690}\right) \times 100 \approx 19.81\% \][/tex]

Hence, the effective tax rate for a taxable income of $145,690 is:

[tex]\[ \boxed{19.81\%} \][/tex]