Solve for [tex]x[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]




Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ \tan 2x = \][/tex]

A. [tex]\[ \frac{\tan x}{1-\tan^2 x} \][/tex]

B. [tex]\[ \frac{2 \tan x}{1-\tan^2 x} \][/tex]

C. [tex]\[ \frac{\tan x}{1+\tan^2 x} \][/tex]

D. [tex]\[ \frac{2 \tan x}{1+\tan^2 x} \][/tex]



Answer :

To determine the correct expression for [tex]\(\tan(2x)\)[/tex], we need to use a well-known trigonometric identity for the tangent of a double angle. The double angle identity for tangent is derived from the sum formula for tangent, [tex]\(\tan(a + b)\)[/tex].

The identity states:
[tex]\[ \tan(2x) = \frac{2 \tan(x)}{1 - \tan^2(x)} \][/tex]

Let’s carefully verify the options provided:
- Option A: [tex]\(\frac{\tan(x)}{1 - \tan^2(x)}\)[/tex]
- Option B: [tex]\(\frac{2 \tan(x)}{1 - \tan^2(x)}\)[/tex]
- Option C: [tex]\(\frac{\tan(x)}{1 + \tan^2(x)}\)[/tex]
- Option D: [tex]\(\frac{2 \tan(x)}{1 + \tan^2(x)}\)[/tex]

According to the correct double angle formula for tangent mentioned above:
[tex]\[ \tan(2x) = \frac{2 \tan(x)}{1 - \tan^2(x)} \][/tex]

We can see that Option B matches the correct identity:
[tex]\[ \frac{2 \tan(x)}{1 - \tan^2(x)} \][/tex]

Thus, the correct answer is:
B. [tex]\(\frac{2 \tan x}{1-\tan^2 x}\)[/tex]