Solve the following problem and select your answer from the choices given.

Question:
The formula for the volume of a right circular cylinder is [tex] V = \pi r^2 h [/tex]. If [tex] r = 2b [/tex] and [tex] h = 5b + 3 [/tex], what is the volume of the cylinder in terms of [tex] b [/tex]?

A. [tex] 10\pi b^2 + 6\pi b [/tex]
B. [tex] 20\pi b^3 + 12\pi b^2 [/tex]
C. [tex] 20\pi^2 b^3 + 12\pi^2 b^2 [/tex]
D. [tex] 50\pi b^3 + 20\pi b^2 + 90\pi b [/tex]



Answer :

To find the volume of a right circular cylinder in terms of [tex]\( b \)[/tex], we start with the formula for the volume of a cylinder:

[tex]\[ V = \pi r^2 h \][/tex]

Given:
[tex]\[ r = 2b \][/tex]
[tex]\[ h = 5b + 3 \][/tex]

First, substitute [tex]\( r \)[/tex] and [tex]\( h \)[/tex] into the volume formula:

[tex]\[ V = \pi (2b)^2 (5b + 3) \][/tex]

Calculate [tex]\( (2b)^2 \)[/tex]:

[tex]\[ (2b)^2 = 4b^2 \][/tex]

Now, substitute [tex]\( 4b^2 \)[/tex] back into the volume formula:

[tex]\[ V = \pi (4b^2)(5b + 3) \][/tex]

Distribute [tex]\( 4b^2 \)[/tex] in the expression:

[tex]\[ V = \pi (4b^2 \cdot 5b + 4b^2 \cdot 3) \][/tex]

Calculate the terms:

[tex]\[ 4b^2 \cdot 5b = 20b^3 \][/tex]
[tex]\[ 4b^2 \cdot 3 = 12b^2 \][/tex]

Combine the terms:

[tex]\[ V = \pi (20b^3 + 12b^2) \][/tex]

Therefore, the volume of the cylinder in terms of [tex]\( b \)[/tex] is:

[tex]\[ V = 20\pi b^3 + 12\pi b^2 \][/tex]

So, the correct answer is:

[tex]\[ 20 \pi b^3 + 12 \pi b^2 \][/tex]

This corresponds to the choice:

[tex]\[ \boxed{20 \pi b^3 + 12 \pi b^2} \][/tex]