Answer :

To solve the inequality [tex]\(5 - (x + 5) > -2(x + 4)\)[/tex], let's follow these steps:

1. Distribute the terms inside the parentheses:
[tex]\[ 5 - x - 5 > -2x - 8 \][/tex]

2. Combine like terms on the left side of the inequality:
[tex]\[ 5 - 5 - x > -2x - 8 \][/tex]
Simplifying this, we get:
[tex]\[ -x > -2x - 8 \][/tex]

3. Isolate the variable [tex]\(x\)[/tex] on one side of the inequality. To do this, add [tex]\(2x\)[/tex] to both sides:
[tex]\[ -x + 2x > -2x + 2x - 8 \][/tex]
Simplifying this, we obtain:
[tex]\[ x > -8 \][/tex]

Thus, the solution to the inequality [tex]\(5 - (x + 5) > -2(x + 4)\)[/tex] is:
[tex]\[ x > -8 \][/tex]