Answered

Given the following matrix:
[tex]\[
3\left[\begin{array}{cc}
-2 & 7 \\
1 & 4
\end{array}\right]
\][/tex]

What is the product for [tex]$c_{2,1}$[/tex]?

A. -6
B. 3
C. 21
D. 12



Answer :

Let's solve this step-by-step.

Given the matrix:
[tex]\[ \begin{bmatrix} -2 & 7 \\ 1 & 4 \end{bmatrix} \][/tex]
and you are required to multiply this matrix by the scalar [tex]\(3\)[/tex].

Step 1: Multiply each element in the matrix by the scalar [tex]\(3\)[/tex].

- For the element in the first row, first column ([tex]\(-2\)[/tex]):
[tex]\[ 3 \times -2 = -6 \][/tex]

- For the element in the first row, second column ([tex]\(7\)[/tex]):
[tex]\[ 3 \times 7 = 21 \][/tex]

- For the element in the second row, first column ([tex]\(1\)[/tex]):
[tex]\[ 3 \times 1 = 3 \][/tex]

- For the element in the second row, second column ([tex]\(4\)[/tex]):
[tex]\[ 3 \times 4 = 12 \][/tex]

Step 2: Construct the resulting matrix after the scalar multiplication:
[tex]\[ \begin{bmatrix} -6 & 21 \\ 3 & 12 \end{bmatrix} \][/tex]

Step 3: Identify the element [tex]\(c_{2,1}\)[/tex] from the resulting matrix. The notation [tex]\(c_{2,1}\)[/tex] refers to the element in the second row, first column of the matrix.

From the resulting matrix:
[tex]\[ \begin{bmatrix} -6 & 21 \\ 3 & 12 \end{bmatrix} \][/tex]

The element [tex]\(c_{2,1}\)[/tex] is [tex]\(3\)[/tex].

Thus, the product for [tex]\(c_{2,1}\)[/tex] is: [tex]\(3\)[/tex].

So, the correct answer is:
b. 3