The weekly revenue for a product is given by [tex]\( R(x) = 120x - 0.015x^2 \)[/tex], and the weekly cost is [tex]\( C(x) = 9000 + 60x - 0.03x^2 + 0.00001x^3 \)[/tex], where [tex]\( x \)[/tex] is the number of units produced and sold.

(a) How many units will give the maximum profit?
(b) What is the maximum possible profit?

(a) The number of units that will give the maximum profit is [tex]\( \square \)[/tex]. (Round to the nearest whole number as needed.)



Answer :

To find the maximum profit, we need to follow these steps systematically:

### Step 1: Define the Profit Function

The profit function [tex]\( P(x) \)[/tex] is given by the difference between the revenue function [tex]\( R(x) \)[/tex] and the cost function [tex]\( C(x) \)[/tex]:

[tex]\[ P(x) = R(x) - C(x) \][/tex]

### Step 2: Express the Revenue and Cost Functions

The revenue function [tex]\( R(x) \)[/tex] is:

[tex]\[ R(x) = 120x - 0.015x^2 \][/tex]

The cost function [tex]\( C(x) \)[/tex] is:

[tex]\[ C(x) = 9000 + 60x - 0.03x^2 + 0.00001x^3 \][/tex]

### Step 3: Formulate the Profit Function

Substituting the revenue and cost functions into the profit function, we get:

[tex]\[ P(x) = (120x - 0.015x^2) - (9000 + 60x - 0.03x^2 + 0.00001x^3) \][/tex]

Simplifying this, we obtain:

[tex]\[ P(x) = 120x - 0.015x^2 - 9000 - 60x + 0.03x^2 - 0.00001x^3 \][/tex]

[tex]\[ P(x) = 60x + 0.015x^2 - 0.00001x^3 - 9000 \][/tex]

### Step 4: Find the First Derivative of the Profit Function

To find the maximum profit, we need to take the first derivative of [tex]\( P(x) \)[/tex] and set it equal to zero:

[tex]\[ P'(x) = \frac{d}{dx} \left(60x + 0.015x^2 - 0.00001x^3 - 9000\right) \][/tex]

[tex]\[ P'(x) = 60 + 0.03x - 0.00003x^2 \][/tex]

### Step 5: Solve for the Critical Points

We set the first derivative equal to zero and solve for [tex]\( x \)[/tex]:

[tex]\[ 60 + 0.03x - 0.00003x^2 = 0 \][/tex]

This is a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]:

[tex]\[ -0.00003x^2 + 0.03x + 60 = 0 \][/tex]

We use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:

Here, [tex]\( a = -0.00003 \)[/tex], [tex]\( b = 0.03 \)[/tex], and [tex]\( c = 60 \)[/tex].

[tex]\[ x = \frac{-0.03 \pm \sqrt{(0.03)^2 - 4(-0.00003)(60)}}{2(-0.00003)} \][/tex]

[tex]\[ x = \frac{-0.03 \pm \sqrt{0.0009 + 0.0072}}{-0.00006} \][/tex]

[tex]\[ x = \frac{-0.03 \pm \sqrt{0.0081}}{-0.00006} \][/tex]

[tex]\[ x = \frac{-0.03 \pm 0.09}{-0.00006} \][/tex]

This gives us two solutions:

[tex]\[ x_1 = \frac{-0.03 + 0.09}{-0.00006} = \frac{0.06}{-0.00006} = -1000 \quad (\text{Not valid as we cannot produce a negative number of units}) \][/tex]

[tex]\[ x_2 = \frac{-0.03 - 0.09}{-0.00006} = \frac{-0.12}{-0.00006} = 2000 \][/tex]

So, the number of units that will give the maximum profit is [tex]\( \boxed{2000} \)[/tex].

### Step 6: Calculate the Maximum Possible Profit

Now, we substitute [tex]\( x = 2000 \)[/tex] back into the profit function [tex]\( P(x) \)[/tex]:

[tex]\[ R(2000) = 120(2000) - 0.015(2000^2) = 240000 - 60000 = 180000 \][/tex]

[tex]\[ C(2000) = 9000 + 60(2000) - 0.03(2000^2) + 0.00001(2000^3) \][/tex]

[tex]\[ C(2000) = 9000 + 120000 - 120000 + 8000 = 137000 \][/tex]

[tex]\[ P(2000) = R(2000) - C(2000) = 180000 - 137000 = 43000 \][/tex]

The maximum possible profit is [tex]\( \boxed{43000} \)[/tex].