What is the following quotient?

[tex]\[ \frac{9+\sqrt{2}}{4-\sqrt{7}} \][/tex]

A. [tex]\(\frac{9 \sqrt{7}+\sqrt{14}}{-3}\)[/tex]

B. [tex]\(\frac{36-9 \sqrt{7}+4 \sqrt{2}-\sqrt{14}}{9}\)[/tex]

C. [tex]\(\frac{36+9 \sqrt{7}+4 \sqrt{2}+\sqrt{14}}{9}\)[/tex]

D. [tex]\(\frac{79}{9}\)[/tex]



Answer :

Sure, let's break down the given quotient and simplify it step-by-step.

We start with the quotient:

[tex]\[ \frac{9 + \sqrt{2}}{4 - \sqrt{7}} \][/tex]

### Step 1: Rationalize the denominator
To eliminate the square root in the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is [tex]\(4 + \sqrt{7}\)[/tex]:

[tex]\[ \frac{(9 + \sqrt{2})(4 + \sqrt{7})}{(4 - \sqrt{7})(4 + \sqrt{7})} \][/tex]

### Step 2: Expand the numerator and denominator
Let's first handle the numerator:

[tex]\[ (9 + \sqrt{2})(4 + \sqrt{7}) = 9 \cdot 4 + 9 \cdot \sqrt{7} + \sqrt{2} \cdot 4 + \sqrt{2} \cdot \sqrt{7} \][/tex]

[tex]\[ = 36 + 9\sqrt{7} + 4\sqrt{2} + \sqrt{14} \][/tex]

Now, let's handle the denominator using the difference of squares:

[tex]\[ (4 - \sqrt{7})(4 + \sqrt{7}) = 4^2 - (\sqrt{7})^2 = 16 - 7 = 9 \][/tex]

So, we have:

[tex]\[ \frac{36 + 9\sqrt{7} + 4\sqrt{2} + \sqrt{14}}{9} \][/tex]

### Step 3: Simplify the expression
We can now simplify this by dividing each term in the numerator by the denominator:

[tex]\[ \frac{36 + 9\sqrt{7} + 4\sqrt{2} + \sqrt{14}}{9} = \frac{36}{9} + \frac{9\sqrt{7}}{9} + \frac{4\sqrt{2}}{9} + \frac{\sqrt{14}}{9} \][/tex]

[tex]\[ = 4 + \sqrt{7} + \frac{4\sqrt{2}}{9} + \frac{\sqrt{14}}{9} \][/tex]

This results in:

[tex]\[ 7.690030381760849 \][/tex]

Thus, the final simplified quotient is approximately [tex]\( 7.690030381760849 \)[/tex].