What is the following product? Assume [tex]$d \geq 0$[/tex].

[tex]\[ \sqrt[3]{d} \cdot \sqrt[3]{d} \cdot \sqrt[3]{d} \][/tex]

A. [tex]d[/tex]
B. [tex]d^3[/tex]
C. [tex]3(\sqrt[3]{d})[/tex]
D. [tex]\sqrt{3 d}[/tex]



Answer :

To find the product [tex]\(\sqrt[3]{d} \cdot \sqrt[3]{d} \cdot \sqrt[3]{d}\)[/tex], we start by recalling what the cube root operation represents. The cube root of a number [tex]\(d\)[/tex], denoted [tex]\(\sqrt[3]{d}\)[/tex], is a number which, when raised to the power of 3, equals [tex]\(d\)[/tex].

Mathematically, the cube root of [tex]\(d\)[/tex] can be written as [tex]\(d^{\frac{1}{3}}\)[/tex]. Now, let's express the given product in terms of exponents:

[tex]\[ \sqrt[3]{d} \cdot \sqrt[3]{d} \cdot \sqrt[3]{d} = d^{\frac{1}{3}} \cdot d^{\frac{1}{3}} \cdot d^{\frac{1}{3}} \][/tex]

When multiplying terms with the same base, we add the exponents:

[tex]\[ d^{\frac{1}{3}} \cdot d^{\frac{1}{3}} \cdot d^{\frac{1}{3}} = d^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} \][/tex]

Next, we sum the exponents:

[tex]\[ \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{3}{3} = 1 \][/tex]

Therefore,

[tex]\[ d^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = d^1 = d \][/tex]

So, the product [tex]\(\sqrt[3]{d} \cdot \sqrt[3]{d} \cdot \sqrt[3]{d}\)[/tex] equals [tex]\(d\)[/tex]. The correct answer is:

[tex]\[ \boxed{d} \][/tex]