Given the equation
[tex] \frac{a}{b} = \frac{c}{d} [/tex]
where [tex]\(a, b, c,\)[/tex] and [tex]\(d\)[/tex] are positive numbers, which of these is equal to [tex]\(b\)[/tex]?

E. [tex] \frac{d}{cb} [/tex]
F. [tex] \frac{c}{ad} [/tex]
G. [tex] \frac{cb}{d} [/tex]
H. [tex] \frac{ad}{c} [/tex]



Answer :

Given the proportion:

[tex]\[ \frac{a}{b} = \frac{c}{d} \][/tex]

We need to determine which of the provided options is equal to [tex]\( b \)[/tex].

First, cross-multiply to eliminate the fractions:

[tex]\[ a \cdot d = b \cdot c \][/tex]

Our goal is to solve for [tex]\( b \)[/tex]. Isolate [tex]\( b \)[/tex] on one side of the equation:

[tex]\[ b \cdot c = a \cdot d \][/tex]

Next, divide both sides of the equation by [tex]\( c \)[/tex]:

[tex]\[ b = \frac{a \cdot d}{c} \][/tex]

Thus, after isolating [tex]\( b \)[/tex], we find that:

[tex]\[ b = \frac{a \cdot d}{c} \][/tex]

Given the options, the correct one that matches our derived expression is:

H. [tex]\(\frac{a d}{c}\)[/tex]