What is the following sum?

[tex]\[4 \sqrt{5} + 2 \sqrt{5}\][/tex]

A. [tex]\(6 \sqrt{10}\)[/tex]

B. [tex]\(8 \sqrt{10}\)[/tex]

C. [tex]\(6 \sqrt{5}\)[/tex]

D. [tex]\(8 \sqrt{5}\)[/tex]



Answer :

Sure! Let's find the sum of the given terms step-by-step.

Given the terms:
[tex]\[ 4\sqrt{5} \][/tex]
[tex]\[ 2\sqrt{5} \][/tex]

First, we express these terms as:
[tex]\[ \text{Term 1: } 4\sqrt{5} \][/tex]
[tex]\[ \text{Term 2: } 2\sqrt{5} \][/tex]

To find the sum of these terms, we combine them:
[tex]\[ 4\sqrt{5} + 2\sqrt{5} \][/tex]

Since [tex]\(\sqrt{5}\)[/tex] is a common factor in both terms, we can add their coefficients (the numbers in front of the square roots):
[tex]\[ 4\sqrt{5} + 2\sqrt{5} = (4 + 2)\sqrt{5} \][/tex]

Adding the coefficients:
[tex]\[ 4 + 2 = 6 \][/tex]

Thus, the simplified sum is:
[tex]\[ 6\sqrt{5} \][/tex]

Now, let's look at the options provided:
1. [tex]\(6\sqrt{10}\)[/tex]
2. [tex]\(8\sqrt{10}\)[/tex]
3. [tex]\(6\sqrt{5}\)[/tex]
4. [tex]\(8\sqrt{5}\)[/tex]

The correct option that matches our simplified sum [tex]\(6\sqrt{5}\)[/tex] is option 3.

So, the answer is:
[tex]\[ \boxed{3} \][/tex]