In simplest radical form, what are the solutions to the quadratic equation [tex]$0 = -3x^2 - 4x + 5$[/tex]?

Quadratic formula: [tex]$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$[/tex]

A. [tex][tex]$x = -\frac{2 \pm \sqrt{19}}{3}$[/tex][/tex]
B. [tex]$x = -\frac{2 \pm 2\sqrt{19}}{3}$[/tex]
C. [tex]$x = \frac{2 \pm \sqrt{19}}{3}$[/tex]
D. [tex][tex]$x = \frac{2 \pm 2\sqrt{19}}{3}$[/tex][/tex]



Answer :

Let's solve the quadratic equation [tex]\(0 = -3x^2 - 4x + 5\)[/tex] using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

First, identify the coefficients from the given quadratic equation:
- [tex]\( a = -3 \)[/tex]
- [tex]\( b = -4 \)[/tex]
- [tex]\( c = 5 \)[/tex]

### Calculation of Discriminant
The discriminant ([tex]\(\Delta\)[/tex]) is part of the quadratic formula and is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]

Plug in the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:

[tex]\[ \Delta = (-4)^2 - 4(-3)(5) \][/tex]

Calculate this step-by-step:
1. Compute [tex]\((-4)^2\)[/tex]:
[tex]\[ (-4)^2 = 16 \][/tex]

2. Compute [tex]\(4(-3)(5)\)[/tex]:
[tex]\[ 4 \cdot (-3) \cdot 5 = -60 \][/tex]

3. Subtract these values:
[tex]\[ \Delta = 16 - (-60) = 16 + 60 = 76 \][/tex]

So, the discriminant is:
[tex]\[ \Delta = 76 \][/tex]

### Solving by the Quadratic Formula
Now, apply the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]

Substitute [tex]\(b\)[/tex], [tex]\(a\)[/tex], and [tex]\(\Delta\)[/tex]:
[tex]\[ x = \frac{-(-4) \pm \sqrt{76}}{2(-3)} \][/tex]

Simplify inside the formula:
1. [tex]\(-(-4) = 4\)[/tex]
2. [tex]\(\sqrt{76}\)[/tex]

[tex]\[ x = \frac{4 \pm \sqrt{76}}{-6} \][/tex]

Next, express [tex]\(\sqrt{76}\)[/tex] in simplest radical form. Since [tex]\(76 = 4 \cdot 19\)[/tex], we write:
[tex]\[ \sqrt{76} = \sqrt{4 \cdot 19} = 2\sqrt{19} \][/tex]

Substitute [tex]\(\sqrt{76}\)[/tex] with [tex]\(2\sqrt{19}\)[/tex]:
[tex]\[ x = \frac{4 \pm 2\sqrt{19}}{-6} \][/tex]

Simplify the fraction by dividing the numerator and the denominator by 2:
[tex]\[ x = \frac{4/2 \pm 2\sqrt{19}/2}{-6/2} = \frac{2 \pm \sqrt{19}}{-3} \][/tex]

Distribute the negative sign in the denominator:
[tex]\[ x = -\frac{2 \pm \sqrt{19}}{3} \][/tex]

Thus, the solutions in simplest radical form are:
[tex]\[ x = -\frac{2 + \sqrt{19}}{3} \quad \text{and} \quad x = -\frac{2 - \sqrt{19}}{3} \][/tex]

So, the correct solution is:
[tex]\[ x = -\frac{2 \pm \sqrt{19}}{3} \][/tex]