Question 3 (Multiple Choice Worth 4 points)

An investment portfolio is shown below.
\begin{tabular}{|c|l|l|}
\hline Investment & Amount Invested & ROR \\
\hline Stock A & [tex]$\$[/tex] 1,800[tex]$ & $[/tex]1.8\%[tex]$ \\
\hline Stock B & $[/tex]\[tex]$ 4,600$[/tex] & [tex]$3.4\%$[/tex] \\
\hline Stock C & [tex]$\$[/tex] 580[tex]$ & $[/tex]12.9\%[tex]$ \\
\hline Stock D & $[/tex]\[tex]$ 1,122$[/tex] & [tex]$-9.5\%$[/tex] \\
\hline
\end{tabular}

Using technology, calculate the weighted dollar amount of Stock C.

A. [tex]$\$[/tex] 32.40[tex]$
B. $[/tex]\[tex]$ 74.82$[/tex]
C. [tex]$\$[/tex] 106.59[tex]$
D. $[/tex]\[tex]$ 156.40$[/tex]



Answer :

To calculate the weighted dollar amount of Stock C, we need to follow these steps:

1. Identify the amount invested in Stock C, which is \[tex]$580. 2. Identify the rate of return (ROR) for Stock C, which is 12.9%. The weighted dollar amount is found by multiplying the amount invested by the ROR (expressed as a decimal). \[ \text{ROR in decimal} = 12.9\% = \frac{12.9}{100} = 0.129 \] Next, multiply the investment amount by the ROR in decimal form: \[ \text{Weighted dollar amount} = \$[/tex]580 \times 0.129 \]

Carrying out this multiplication:

[tex]\[ \$580 \times 0.129 = \$74.82 \][/tex]

Therefore, the weighted dollar amount of Stock C is [tex]\(\$ 74.82\)[/tex].

Thus, the correct answer is:

[tex]\(\$ 74.82\)[/tex]