For the given simplex tableau,

(a) List the basic and nonbasic variables.
(b) Find the basic feasible solution determined by setting the nonbasic variables equal to 0.
(c) Decide whether this is a maximum solution.

[tex]\[
\left[
\begin{array}{cccccccc}
x_1 & x_2 & x_3 & s_1 & s_2 & s_3 & z & \\
0 & 8 & 0 & \frac{1}{2} & 1 & \frac{4}{3} & 0 & 8 \\
1 & 5 & 0 & 5 & 0 & -7 & 0 & 12 \\
0 & 5 & 1 & \frac{7}{2} & 0 & -\frac{2}{3} & 0 & 26 \\
\hline
0 & 4 & 0 & \frac{1}{2} & 0 & 5 & 1 & 17
\end{array}
\right]
\][/tex]

(a) The basic variables are [tex]\(\square\)[/tex] 1. (Use a comma to separate answers as needed.)

(b)

(c)



Answer :

To answer the given question in a detailed and step-by-step manner:

### (a) List the basic and nonbasic variables
Basic variables are those associated with columns that have exactly one entry of 1 and the rest are 0s in the tableau. These columns correspond to identity matrix columns in a given row.

Nonbasic variables are the remaining variables not used for the basic variables.

Looking at the tableau:
[tex]\[ \left[\begin{array}{cccccccc} x_1 & x_2 & x_3 & s_1 & s_2 & s_3 & z & \\ 0 & 8 & 0 & \frac{1}{2} & 1 & \frac{4}{3} & 0 & 8 \\ 1 & 5 & 0 & 5 & 0 & -7 & 0 & 12 \\ 0 & 5 & 1 & \frac{7}{2} & 0 & -\frac{2}{3} & 0 & 26 \\ \hline 0 & 4 & 0 & \frac{1}{2} & 0 & 5 & 1 & 17 \end{array}\right] \][/tex]

From the tableau, the columns for [tex]\( x_1 \)[/tex], [tex]\( x_3 \)[/tex], [tex]\( s_3 \)[/tex], and [tex]\( z \)[/tex] fit the criteria of having exactly one entry of 1 and the rest being 0s.

Thus, the basic variables are:
[tex]\[ \boxed{x_1, x_3, s_3, z} \][/tex]

The nonbasic variables, which are the remaining variables, are:
[tex]\[ \boxed{x_2, s_1, s_2} \][/tex]

### (b) Find the basic feasible solution
To determine the basic feasible solution, set the nonbasic variables to 0. This means:
[tex]\[ x_2 = 0, \quad s_1 = 0, \quad s_2 = 0 \][/tex]

Now, extract the values of the basic variables directly from the tableau.

- The value corresponding to [tex]\( s_3 \)[/tex] can be found where the column for [tex]\( s_3 \)[/tex] intersects the rightmost column of the tableau, which is 8.
- Similarly, [tex]\( x_1 \)[/tex] intersects at 12.
- For [tex]\( x_3 \)[/tex], the intersection is at 26.
- For [tex]\( z \)[/tex], the intersection is at 17.

Thus, the basic feasible solution is:
[tex]\[ \boxed{\{x_1: 12, x_3: 26, s_3: 8, z: 17\}} \][/tex]

### (c) Determine whether this is a maximum solution
To decide whether this is a maximum solution, examine the coefficients in the bottom row (not including the rightmost value of the row):
[tex]\[0 \quad 4 \quad 0 \quad \frac{1}{2} \quad 0 \quad 5 \quad 1 \quad 17\][/tex]

For this to represent a maximum solution in the context of a maximization problem, all the entries in the bottom row (excluding the rightmost value) must be greater than or equal to 0.
The bottom row values are:
[tex]\[4, \quad 0.5, \quad 0, \quad 5, \quad 1\][/tex]

Since each of these values is greater than or equal to 0, this confirms that the current solution is indeed a maximum solution.

Therefore, the answer here is:
[tex]\[ \boxed{\text{True}} \][/tex]

In summary:
- (a) The basic variables are [tex]\( x_1, x_3, s_3, z \)[/tex].
- (b) The basic feasible solution is [tex]\( \{x_1: 12, x_3: 26, s_3: 8, z: 17\} \)[/tex].
- (c) This is a maximum solution.