Express the confidence interval [tex]$(0.066, 0.130)$[/tex] in the form of [tex]\hat{p} - E \ \textless \ p \ \textless \ \hat{p} + E[/tex].

[tex]\square \ \textless \ p \ \textless \ \square[/tex] (Type integers or decimals.)



Answer :

To express the confidence interval [tex]\((0.066, 0.130)\)[/tex] in the form of [tex]\(\hat{p} - E < p < \hat{p} + E\)[/tex], we need to identify the point estimate [tex]\(\hat{p}\)[/tex] and the margin of error [tex]\(E\)[/tex].

1. Calculate the point estimate [tex]\(\hat{p}\)[/tex]:
The point estimate [tex]\(\hat{p}\)[/tex] is the midpoint of the given confidence interval. It can be found by averaging the lower and upper bounds of the interval:
[tex]\[ \hat{p} = \frac{0.066 + 0.130}{2} \][/tex]

2. Calculate the margin of error [tex]\(E\)[/tex]:
The margin of error [tex]\(E\)[/tex] is half the width of the confidence interval. It can be found by subtracting the lower bound from the upper bound and dividing by 2:
[tex]\[ E = \frac{0.130 - 0.066}{2} \][/tex]

Given the results:
[tex]\[ \hat{p} = 0.098 \][/tex]
[tex]\[ E = 0.032 \][/tex]

Thus, the confidence interval [tex]\((0.066, 0.130)\)[/tex] can be expressed in the form [tex]\(\hat{p} - E < p < \hat{p} + E\)[/tex] as follows:
[tex]\[ 0.098 - 0.032 < p < 0.098 + 0.032 \][/tex]

Simplifying the expressions, we get:
[tex]\[ 0.066 < p < 0.130 \][/tex]

Therefore, the confidence interval [tex]\((0.066, 0.130)\)[/tex] expressed in the form [tex]\(\hat{p} - E < p < \hat{p} + E\)[/tex] is:

[tex]\[ 0.066 < p < 0.130 \][/tex]