Question 13

Use a calculator to find the approximate value of the trigonometric function. Round to 4 decimal places as necessary.

[tex] \tan 38^{\circ} = \square [/tex]



Answer :

To find the approximate value of [tex]\(\tan 38^\circ\)[/tex], follow these steps:

1. Convert the angle from degrees to radians: Most trigonometric functions on calculators require the angle to be in radians. The formula to convert degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \][/tex]
Plugging in our angle:
[tex]\[ \text{radians} = 38^\circ \times \frac{\pi}{180} \approx 0.6632 \text{ radians} \][/tex]

2. Calculate the tangent of the angle in radians: Use the tangent function on the calculator, which typically requires input in radians.
[tex]\[ \tan 0.6632 \approx 0.7813 \][/tex]

So, the approximate value of [tex]\(\tan 38^\circ\)[/tex], rounded to 4 decimal places, is:
[tex]\[ \tan 38^\circ \approx 0.7813 \][/tex]

Thus, [tex]\(\tan 38^\circ\)[/tex] is approximately [tex]\(\boxed{0.7813}\)[/tex].