How many moles are in [tex]$3.75 \times 10^{23}$[/tex] atoms of Co?

[tex]\[
\begin{tabular}{c|c}
$3.75 \times 10^{23}$ atoms Co & 1 mole Co \\
\hline
& $6.02 \times 10^{23}$ atoms Co
\end{tabular}
\][/tex]

A. [tex]$6.2 \times 10^{45}$[/tex] mol
B. 0.62 mol



Answer :

To determine how many moles are in [tex]\( 3.75 \times 10^{23} \)[/tex] atoms of cobalt (Co), we'll use Avogadro's number. Avogadro's number, which is approximately [tex]\( 6.02 \times 10^{23} \)[/tex], is the number of atoms or molecules in one mole of a substance.

Here's the step-by-step solution:

1. Identify the given data:
- Number of atoms of Co: [tex]\( 3.75 \times 10^{23} \)[/tex] atoms
- Avogadro's number: [tex]\( 6.02 \times 10^{23} \)[/tex] atoms/mole

2. Set up the calculation:
The relationship between the number of atoms and moles is given by the formula:
[tex]\[ \text{{Number of moles}} = \frac{\text{{Number of atoms}}}{\text{{Avogadro's number}}} \][/tex]
Plugging in the given values:
[tex]\[ \text{{Number of moles}} = \frac{3.75 \times 10^{23} \text{ atoms}}{6.02 \times 10^{23} \text{ atoms/mole}} \][/tex]

3. Divide the numbers:
[tex]\[ \text{{Number of moles}} = \frac{3.75}{6.02} \][/tex]

4. Simplify the fraction:
[tex]\[ \frac{3.75}{6.02} \approx 0.62 \][/tex]

Therefore, the calculation tells us that there are approximately [tex]\( 0.62 \)[/tex] moles of cobalt (Co) in [tex]\( 3.75 \times 10^{23} \)[/tex] atoms of Co.