How many atoms are in 112 g of Si?

- Molar mass of Si = [tex]$28.09 \, \text{g/mol}$[/tex]
- 1 mole = [tex]$6.02 \times 10^{23}$[/tex] atoms

A. [tex]$1.51 \times 10^{23}$[/tex] atoms Si
B. [tex]$2.40 \times 10^{24}$[/tex] atoms Si
C. [tex]$6.62 \times 10^{-24}$[/tex] atoms Si
D. [tex]$1.89 \times 10^{27}$[/tex] atoms Si



Answer :

To determine the number of atoms in 112 grams of silicon (Si), we need to follow a series of steps, making use of the given molar mass of silicon and Avogadro's number. Here's a detailed step-by-step solution:

1. Determine the molar mass of silicon (Si):
- The molar mass of silicon is given as 28.09 grams per mole (g/mol).

2. Calculate the number of moles of silicon (Si):
- Mass of silicon (Si) provided: 112 grams (g).
- Number of moles ([tex]\( n \)[/tex]) can be calculated using the formula:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
- Plugging in the values:
[tex]\[ n = \frac{112 \text{ g}}{28.09 \text{ g/mol}} \][/tex]

3. Evaluate the number of moles:
- Performing the division:
[tex]\[ n \approx 3.987 \text{ moles} \][/tex]

4. Use Avogadro's number to find the number of atoms:
- Avogadro's number, which represents the number of atoms in one mole of a substance, is given as [tex]\( 6.02 \times 10^{23} \)[/tex] atoms per mole.
- The number of atoms ([tex]\( N \)[/tex]) can be calculated using the formula:
[tex]\[ N = n \times \text{Avogadro's number} \][/tex]
- Plugging in the values:
[tex]\[ N = 3.987 \text{ moles} \times 6.02 \times 10^{23} \text{ atoms/mole} \][/tex]

5. Evaluate the number of atoms:
- Multiplying these values:
[tex]\[ N \approx 2.40 \times 10^{24} \text{ atoms} \][/tex]

Given our calculations, the number of atoms in 112 grams of silicon is approximately [tex]\( 2.40 \times 10^{24} \)[/tex] atoms. Therefore, the correct answer is:

B. [tex]\(2.40 \times 10^{24}\)[/tex] atoms Si.