Cryshel is mailing pillows with a total volume of [tex]$8.5 \, \text{ft}^3$[/tex]. She needs a mailing box that has a volume greater than [tex]$8.5 \, \text{ft}^3$[/tex].

- Box A: length [tex]$= 3 \, \text{ft}$[/tex], width [tex]$= 1.5 \, \text{ft}$[/tex], height [tex]$= 2 \, \text{ft}$[/tex]
- Box B: length [tex]$= 2 \, \text{ft}$[/tex], width [tex]$= 2 \, \text{ft}$[/tex], height [tex]$= 1.5 \, \text{ft}$[/tex]

Which box is large enough to hold all of her pillows?

A. Box A
B. Neither box
C. Box B
D. Both Box A and Box B



Answer :

To determine which box is large enough to hold all of the pillows with a total volume of [tex]\(8.5 \, ft^3\)[/tex], we will need to calculate the volume of each box and compare it to the given pillow volume.

### Step 1: Calculate the Volume of Box A

Box A has the following dimensions:
- Length: [tex]\(3 \, ft\)[/tex]
- Width: [tex]\(1.5 \, ft\)[/tex]
- Height: [tex]\(2 \, ft\)[/tex]

The formula for the volume of a rectangular box is:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]

Plugging in the dimensions for Box A:
[tex]\[ \text{Volume of Box A} = 3 \, ft \times 1.5 \, ft \times 2 \, ft \][/tex]

Calculate the volume step by step:
[tex]\[ 3 \times 1.5 = 4.5 \][/tex]
[tex]\[ 4.5 \times 2 = 9 \][/tex]

So, the volume of Box A is [tex]\(9 \, ft^3\)[/tex].

### Step 2: Calculate the Volume of Box B

Box B has the following dimensions:
- Length: [tex]\(2 \, ft\)[/tex]
- Width: [tex]\(2 \, ft\)[/tex]
- Height: [tex]\(1.5 \, ft\)[/tex]

Using the same volume formula:
[tex]\[ \text{Volume of Box B} = 2 \, ft \times 2 \, ft \times 1.5 \, ft \][/tex]

Calculate the volume step by step:
[tex]\[ 2 \times 2 = 4 \][/tex]
[tex]\[ 4 \times 1.5 = 6 \][/tex]

So, the volume of Box B is [tex]\(6 \, ft^3\)[/tex].

### Step 3: Compare Volumes to Pillow Volume

We need to compare the volumes of both boxes to the volume of the pillows, which is [tex]\(8.5 \, ft^3\)[/tex].

- Volume of Box A: [tex]\(9 \, ft^3\)[/tex]
- Volume of Box B: [tex]\(6 \, ft^3\)[/tex]

Now, we check which volume is greater than [tex]\(8.5 \, ft^3\)[/tex].

- Box A: [tex]\(9 > 8.5\)[/tex], so Box A is large enough.
- Box B: [tex]\(6 < 8.5\)[/tex], so Box B is not large enough.

### Conclusion

Since only Box A has a volume greater than [tex]\(8.5 \, ft^3\)[/tex], the correct answer is:

A. Box A