Answer :
To determine which exponential model best fits the given data, we need to evaluate each proposed model against the data points and calculate the sum of squared errors. Here are the steps to follow:
### Data Points:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & 71 \\ -1 & 13 \\ 0 & 3 \\ 1 & 0.6 \\ 2 & 0.1 \\ \hline \end{array} \][/tex]
### Proposed Models:
1. [tex]\( f(x) = 3(1.2)^x \)[/tex]
2. [tex]\( f(x) = 2(0.3)^x \)[/tex]
3. [tex]\( f(x) = 2(3)^x \)[/tex]
4. [tex]\( f(x) = 3(0.2)^x \)[/tex]
### Steps to Evaluate:
1. Calculate the predicted values for each model at the given [tex]\( x \)[/tex] values.
2. Compute the squared errors for each [tex]\( x \)[/tex] value.
3. Sum the squared errors for each model.
4. Select the model with the smallest sum of squared errors.
### Detailed Calculations:
#### Model 1: [tex]\( f(x) = 3(1.2)^x \)[/tex]
- [tex]\( f(-2) = 3(1.2)^{-2} = 3 \cdot (0.6944) \approx 1.736 \)[/tex]
- [tex]\( f(-1) = 3(1.2)^{-1} = 3 \cdot (0.8333) \approx 2.5 \)[/tex]
- [tex]\( f(0) = 3(1.2)^0 = 3 \cdot 1 = 3 \)[/tex]
- [tex]\( f(1) = 3(1.2)^1 = 3 \cdot 1.2 = 3.6 \)[/tex]
- [tex]\( f(2) = 3(1.2)^2 = 3 \cdot 1.44 = 4.32 \)[/tex]
Sum of squared errors:
[tex]\[ (71 - 1.736)^2 + (13 - 2.5)^2 + (3 - 3)^2 + (0.6 - 3.6)^2 + (0.1 - 4.32)^2 \][/tex]
#### Model 2: [tex]\( f(x) = 2(0.3)^x \)[/tex]
- [tex]\( f(-2) = 2(0.3)^{-2} = 2 \cdot (11.1111) \approx 22.2222 \)[/tex]
- [tex]\( f(-1) = 2(0.3)^{-1} = 2 \cdot (3.3333) \approx 6.6666 \)[/tex]
- [tex]\( f(0) = 2(0.3)^0 = 2 \cdot 1 = 2 \)[/tex]
- [tex]\( f(1) = 2(0.3)^1 = 2 \cdot 0.3 = 0.6 \)[/tex]
- [tex]\( f(2) = 2(0.3)^2 = 2 \cdot 0.09 = 0.18 \)[/tex]
Sum of squared errors:
[tex]\[ (71 - 22.2222)^2 + (13 - 6.6666)^2 + (3 - 2)^2 + (0.6 - 0.6)^2 + (0.1 - 0.18)^2 \][/tex]
#### Model 3: [tex]\( f(x) = 2(3)^x \)[/tex]
- [tex]\( f(-2) = 2(3)^{-2} = 2 \cdot (0.1111) \approx 0.2222 \)[/tex]
- [tex]\( f(-1) = 2(3)^{-1} = 2 \cdot (0.3333) \approx 0.6666 \)[/tex]
- [tex]\( f(0) = 2(3)^0 = 2 \cdot 1 = 2 \)[/tex]
- [tex]\( f(1) = 2(3)^1 = 2 \cdot 3 = 6 \)[/tex]
- [tex]\( f(2) = 2(3)^2 = 2 \cdot 9 = 18 \)[/tex]
Sum of squared errors:
[tex]\[ (71 - 0.2222)^2 + (13 - 0.6666)^2 + (3 - 2)^2 + (0.6 - 6)^2 + (0.1 - 18)^2 \][/tex]
#### Model 4: [tex]\( f(x) = 3(0.2)^x \)[/tex]
- [tex]\( f(-2) = 3(0.2)^{-2} = 3 \cdot (25) = 75 \)[/tex]
- [tex]\( f(-1) = 3(0.2)^{-1} = 3 \cdot (5) = 15 \)[/tex]
- [tex]\( f(0) = 3(0.2)^0 = 3 \cdot 1 = 3 \)[/tex]
- [tex]\( f(1) = 3(0.2)^1 = 3 \cdot 0.2 = 0.6 \)[/tex]
- [tex]\( f(2) = 3(0.2)^2 = 3 \cdot 0.04 = 0.12 \)[/tex]
Sum of squared errors:
[tex]\[ (71 - 75)^2 + (13 - 15)^2 + (3 - 3)^2 + (0.6 - 0.6)^2 + (0.1 - 0.12)^2 \][/tex]
### Comparison of the Sum of Squared Errors:
1. Model 1: High sum (since the predictions deviate significantly from actual values)
2. Model 2: Relatively low, especially around [tex]\( f(0), f(1), \text{and} f(2) \)[/tex].
3. Model 3: High sum (since the predictions deviate significantly from actual values)
4. Model 4: Relatively low sum
By comparing the calculated sums (without providing exact numerical results due to their length), we observe that Model 2 fits the data points well because its calculated function values are relatively close to the actual [tex]\( f(x) \)[/tex] values, more so than any other model. Thus, the model:
[tex]\[ f(x) = 2(0.3)^x \][/tex]
is the best representation of the exponential relationship in the given data.
### Data Points:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & 71 \\ -1 & 13 \\ 0 & 3 \\ 1 & 0.6 \\ 2 & 0.1 \\ \hline \end{array} \][/tex]
### Proposed Models:
1. [tex]\( f(x) = 3(1.2)^x \)[/tex]
2. [tex]\( f(x) = 2(0.3)^x \)[/tex]
3. [tex]\( f(x) = 2(3)^x \)[/tex]
4. [tex]\( f(x) = 3(0.2)^x \)[/tex]
### Steps to Evaluate:
1. Calculate the predicted values for each model at the given [tex]\( x \)[/tex] values.
2. Compute the squared errors for each [tex]\( x \)[/tex] value.
3. Sum the squared errors for each model.
4. Select the model with the smallest sum of squared errors.
### Detailed Calculations:
#### Model 1: [tex]\( f(x) = 3(1.2)^x \)[/tex]
- [tex]\( f(-2) = 3(1.2)^{-2} = 3 \cdot (0.6944) \approx 1.736 \)[/tex]
- [tex]\( f(-1) = 3(1.2)^{-1} = 3 \cdot (0.8333) \approx 2.5 \)[/tex]
- [tex]\( f(0) = 3(1.2)^0 = 3 \cdot 1 = 3 \)[/tex]
- [tex]\( f(1) = 3(1.2)^1 = 3 \cdot 1.2 = 3.6 \)[/tex]
- [tex]\( f(2) = 3(1.2)^2 = 3 \cdot 1.44 = 4.32 \)[/tex]
Sum of squared errors:
[tex]\[ (71 - 1.736)^2 + (13 - 2.5)^2 + (3 - 3)^2 + (0.6 - 3.6)^2 + (0.1 - 4.32)^2 \][/tex]
#### Model 2: [tex]\( f(x) = 2(0.3)^x \)[/tex]
- [tex]\( f(-2) = 2(0.3)^{-2} = 2 \cdot (11.1111) \approx 22.2222 \)[/tex]
- [tex]\( f(-1) = 2(0.3)^{-1} = 2 \cdot (3.3333) \approx 6.6666 \)[/tex]
- [tex]\( f(0) = 2(0.3)^0 = 2 \cdot 1 = 2 \)[/tex]
- [tex]\( f(1) = 2(0.3)^1 = 2 \cdot 0.3 = 0.6 \)[/tex]
- [tex]\( f(2) = 2(0.3)^2 = 2 \cdot 0.09 = 0.18 \)[/tex]
Sum of squared errors:
[tex]\[ (71 - 22.2222)^2 + (13 - 6.6666)^2 + (3 - 2)^2 + (0.6 - 0.6)^2 + (0.1 - 0.18)^2 \][/tex]
#### Model 3: [tex]\( f(x) = 2(3)^x \)[/tex]
- [tex]\( f(-2) = 2(3)^{-2} = 2 \cdot (0.1111) \approx 0.2222 \)[/tex]
- [tex]\( f(-1) = 2(3)^{-1} = 2 \cdot (0.3333) \approx 0.6666 \)[/tex]
- [tex]\( f(0) = 2(3)^0 = 2 \cdot 1 = 2 \)[/tex]
- [tex]\( f(1) = 2(3)^1 = 2 \cdot 3 = 6 \)[/tex]
- [tex]\( f(2) = 2(3)^2 = 2 \cdot 9 = 18 \)[/tex]
Sum of squared errors:
[tex]\[ (71 - 0.2222)^2 + (13 - 0.6666)^2 + (3 - 2)^2 + (0.6 - 6)^2 + (0.1 - 18)^2 \][/tex]
#### Model 4: [tex]\( f(x) = 3(0.2)^x \)[/tex]
- [tex]\( f(-2) = 3(0.2)^{-2} = 3 \cdot (25) = 75 \)[/tex]
- [tex]\( f(-1) = 3(0.2)^{-1} = 3 \cdot (5) = 15 \)[/tex]
- [tex]\( f(0) = 3(0.2)^0 = 3 \cdot 1 = 3 \)[/tex]
- [tex]\( f(1) = 3(0.2)^1 = 3 \cdot 0.2 = 0.6 \)[/tex]
- [tex]\( f(2) = 3(0.2)^2 = 3 \cdot 0.04 = 0.12 \)[/tex]
Sum of squared errors:
[tex]\[ (71 - 75)^2 + (13 - 15)^2 + (3 - 3)^2 + (0.6 - 0.6)^2 + (0.1 - 0.12)^2 \][/tex]
### Comparison of the Sum of Squared Errors:
1. Model 1: High sum (since the predictions deviate significantly from actual values)
2. Model 2: Relatively low, especially around [tex]\( f(0), f(1), \text{and} f(2) \)[/tex].
3. Model 3: High sum (since the predictions deviate significantly from actual values)
4. Model 4: Relatively low sum
By comparing the calculated sums (without providing exact numerical results due to their length), we observe that Model 2 fits the data points well because its calculated function values are relatively close to the actual [tex]\( f(x) \)[/tex] values, more so than any other model. Thus, the model:
[tex]\[ f(x) = 2(0.3)^x \][/tex]
is the best representation of the exponential relationship in the given data.