Given the function [tex]\( g(x) = -3x^2 \)[/tex], evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = -3, -2, -1, 0, 1, 2, 3 \)[/tex].



Answer :

To solve for [tex]\( g(x) \)[/tex] given [tex]\( g(x) = -3x^2 \)[/tex] and [tex]\( x \)[/tex] values of [tex]\(-3, -2, -1, 0, 1, 2, 3\)[/tex], we will evaluate [tex]\( g(x) \)[/tex] for each of these [tex]\( x \)[/tex] values step by step.

1. When [tex]\( x = -3 \)[/tex]:
[tex]\[ g(-3) = -3 \cdot (-3)^2 = -3 \cdot 9 = -27 \][/tex]

2. When [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = -3 \cdot (-2)^2 = -3 \cdot 4 = -12 \][/tex]

3. When [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = -3 \cdot (-1)^2 = -3 \cdot 1 = -3 \][/tex]

4. When [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = -3 \cdot 0^2 = -3 \cdot 0 = 0 \][/tex]

5. When [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = -3 \cdot 1^2 = -3 \cdot 1 = -3 \][/tex]

6. When [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = -3 \cdot 2^2 = -3 \cdot 4 = -12 \][/tex]

7. When [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = -3 \cdot 3^2 = -3 \cdot 9 = -27 \][/tex]

Given these calculations, the corresponding [tex]\( g(x) \)[/tex] values for the provided [tex]\( x \)[/tex] values are:

[tex]\[ \begin{array}{cc} x & g(x) \\ \hline -3 & -27 \\ -2 & -12 \\ -1 & -3 \\ 0 & 0 \\ 1 & -3 \\ 2 & -12 \\ 3 & -27 \\ \end{array} \][/tex]

Thus, the resulting array [tex]\( g(x) \)[/tex] for [tex]\( x = [-3, -2, -1, 0, 1, 2, 3] \)[/tex] is:

[tex]\[ [-27, -12, -3, 0, -3, -12, -27] \][/tex]