Consider the table showing the given, predicted, and residual values for a data set.

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & Given & Predicted & Residual \\
\hline
1 & -1.6 & -1.2 & -0.4 \\
\hline
2 & 2.2 & 1.5 & 0.7 \\
\hline
3 & 4.5 & 4.7 & -0.2 \\
\hline
4 & 6.1 & 6.7 & -0.6 \\
\hline
\end{tabular}

Which point would be on the residual plot of the data?

A. [tex]$(1, -1.6)$[/tex]
B. [tex]$(2, 1.5)$[/tex]
C. [tex]$(3, 4.5)$[/tex]
D. [tex]$(4, -0.6)$[/tex]



Answer :

To determine which point would be on the residual plot of the given data, we need to understand the structure and the meaning of the residual plot.

A residual plot displays the residuals on the vertical axis and the x-values on the horizontal axis. The residual is the difference between the given value and the predicted value (Residual = Given - Predicted).

From the table provided:
[tex]\[ \begin{array}{|c|c|c|c|} \hline x & \text{Given} & \text{Predicted} & \text{Residual} \\ \hline 1 & -1.6 & -1.2 & -0.4 \\ \hline 2 & 2.2 & 1.5 & 0.7 \\ \hline 3 & 4.5 & 4.7 & -0.2 \\ \hline 4 & 6.1 & 6.7 & -0.6 \\ \hline \end{array} \][/tex]

We need to identify which one from the provided answer options corresponds to an entry on the residual plot. The residual plot includes pairs [tex]\((x, \text{Residual})\)[/tex]. Based on our table, the [tex]\((x, \text{Residual})\)[/tex] pairs are:
- (1, -0.4)
- (2, 0.7)
- (3, -0.2)
- (4, -0.6)

Let's compare these pairs with the provided answer options:
1. [tex]\((1, -1.6)\)[/tex]
2. [tex]\((2, 1.5)\)[/tex]
3. [tex]\((3, 4.5)\)[/tex]
4. [tex]\((4, -0.6)\)[/tex]

Among the options, the correct pair, [tex]\((x, \text{Residual})\)[/tex] which fits the residual plot from the table, would be [tex]\((4, -0.6)\)[/tex].

Therefore, the point [tex]\((4, -0.6)\)[/tex] is the one that would be on the residual plot of the data.